List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4681610/publications.pdf Version: 2024-02-01

Ιινιςουι Μλο

#	Article	IF	CITATIONS
1	Global atmospheric model for mercury including oxidation by bromine atoms. Atmospheric Chemistry and Physics, 2010, 10, 12037-12057.	1.9	411
2	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	1.9	307
3	Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmospheric Chemistry and Physics, 2011, 11, 12453-12473.	1.9	298
4	Airborne measurement of OH reactivity during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 163-173.	1.9	293
5	Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmospheric Chemistry and Physics, 2014, 14, 2679-2698.	1.9	259
6	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 9739-9760.	1.9	234
7	Chemistry of hydrogen oxide radicals (HO _x) in the Arctic troposphere in spring. Atmospheric Chemistry and Physics, 2010, 10, 5823-5838.	1.9	220
8	Atmospheric oxidation capacity in the summer of Houston 2006: Comparison with summer measurements in other metropolitan studies. Atmospheric Environment, 2010, 44, 4107-4115.	1.9	214
9	Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,256.	1.2	213
10	Insights into hydroxyl measurements and atmospheric oxidation in a California forest. Atmospheric Chemistry and Physics, 2012, 12, 8009-8020.	1.9	211
11	Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmospheric Chemistry and Physics, 2006, 6, 2753-2765.	1.9	204
12	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics, 2016, 16, 5969-5991.	1.9	173
13	Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. Atmospheric Chemistry and Physics, 2012, 12, 6219-6235.	1.9	166
14	HO _{<i>x</i>} chemistry during INTEXâ€A 2004: Observation, model calculation, and comparison with previous studies. Journal of Geophysical Research, 2008, 113, .	3.3	163
15	Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols. Atmospheric Chemistry and Physics, 2013, 13, 509-519.	1.9	156
16	Behavior of OH and HO2 in the winter atmosphere in New York City. Atmospheric Environment, 2006, 40, 252-263.	1.9	154
17	Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions. Atmospheric Environment, 2010, 44, 4553-4564.	1.9	131
18	Formaldehyde production from isoprene oxidation acrossÂNO _{<i>x</i>} Âregimes. Atmospheric Chemistry and Physics, 2016, 16, 2597-2610.	1.9	124

#	Article	IF	CITATIONS
19	Observational Insights into Aerosol Formation from Isoprene. Environmental Science & Technology, 2013, 47, 11403-11413.	4.6	113
20	Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. Atmospheric Chemistry and Physics, 2009, 9, 7623-7641.	1.9	105
21	Impact of preindustrial to presentâ€day changes in shortâ€lived pollutant emissions on atmospheric composition and climate forcing. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8086-8110.	1.2	103
22	Local Arctic Air Pollution: A Neglected but Serious Problem. Earth's Future, 2018, 6, 1385-1412.	2.4	96
23	Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 in Houston, Texas. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5770-5780.	1.2	92
24	The role of the ocean in the global atmospheric budget of acetone. Geophysical Research Letters, 2012, 39, .	1.5	90
25	The Chemistry of Atmosphere-Forest Exchange (CAFE) Model – Part 2: Application to BEARPEX-2007 observations. Atmospheric Chemistry and Physics, 2011, 11, 1269-1294.	1.9	85
26	Modeling uncertainties for tropospheric nitrogen dioxide columns affecting satellite-based inverse modeling of nitrogen oxides emissions. Atmospheric Chemistry and Physics, 2012, 12, 12255-12275.	1.9	85
27	Characterization of Wintertime Reactive Oxygen Species Concentrations in Flushing, New York. Aerosol Science and Technology, 2007, 41, 97-111.	1.5	84
28	Topâ€down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6849-6868.	1.2	84
29	Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic. Atmospheric Chemistry and Physics, 2015, 15, 3575-3603.	1.9	83
30	Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nature Climate Change, 2015, 5, 454-458.	8.1	83
31	Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth. Atmospheric Chemistry and Physics, 2016, 16, 1459-1477.	1.9	79
32	A comparison of chemical mechanisms based on TRAMP-2006 field data. Atmospheric Environment, 2010, 44, 4116-4125.	1.9	67
33	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744.	1.9	62
34	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	1.2	58
35	Measurement of atmospheric nitrous acid at Bodgett Forest during BEARPEX2007. Atmospheric Chemistry and Physics, 2010, 10, 6283-6294.	1.9	55
	Global and regional effects of the photochemistry of		

CH<sub&gt;3&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;NO&lt;sub&gt;2&lt;/sub&gt;2&lt;sub&gt;2&l

#	Article	IF	CITATIONS
37	The GFDL Global Atmospheric Chemistryâ€Climate Model AM4.1: Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002032.	1.3	51
38	Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons. Atmospheric Chemistry and Physics, 2010, 10, 8761-8781.	1.9	50
39	Exploring the relationship between surface PM _{2.5} and meteorology in Northern India. Atmospheric Chemistry and Physics, 2018, 18, 10157-10175.	1.9	50
40	Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9849-9861.	1.2	48
41	Can a "state of the art―chemistry transport model simulate Amazonian tropospheric chemistry?. Journal of Geophysical Research, 2011, 116, .	3.3	47
42	Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds. Atmospheric Chemistry and Physics, 2011, 11, 11867-11894.	1.9	46
43	Impact of clouds and aerosols on ozone production in Southeast Texas. Atmospheric Environment, 2010, 44, 4126-4133.	1.9	45
44	Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP simulations. Atmospheric Chemistry and Physics, 2015, 15, 6047-6068.	1.9	43
45	Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007. Atmospheric Chemistry and Physics, 2011, 11, 8883-8897.	1.9	41
46	Perspective on identifying and characterizing the processes controlling iron speciation and residence time at the atmosphere-ocean interface. Marine Chemistry, 2019, 217, 103704.	0.9	41
47	An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE. Atmospheric Chemistry and Physics, 2012, 12, 6799-6825.	1.9	38
48	Sensitivity of tropospheric oxidants to biomass burning emissions: implications for radiative forcing. Geophysical Research Letters, 2013, 40, 1241-1246.	1.5	36
49	Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.	1.9	36
50	Global atmospheric chemistry – which air matters. Atmospheric Chemistry and Physics, 2017, 17, 9081-9102.	1.9	32
51	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 2018, 18, 2341-2361.	1.9	30
52	Airborne intercomparison of HO _x measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS. Atmospheric Measurement Techniques, 2012, 5, 2025-2037.	1.2	28
53	Quantifying the causes of differences in tropospheric OH within global models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1983-2007.	1.2	27
54	Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an observationally constrained regional model using TROPOMI. Atmospheric Chemistry and Physics, 2021, 21, 18227-18245.	1.9	25

#	Article	IF	CITATIONS
55	Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4272-4295.	1.2	24
56	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	1.1	23
57	Soluble Fe in Aerosols Sustained by Gaseous HO ₂ Uptake. Environmental Science and Technology Letters, 2017, 4, 98-104.	3.9	22
58	Extreme oxidant amounts produced by lightning in storm clouds. Science, 2021, 372, 711-715.	6.0	22
59	Brownness of Organic Aerosol over the United States: Evidence for Seasonal Biomass Burning and Photobleaching Effects. Environmental Science & Technology, 2021, 55, 8561-8572.	4.6	19
60	An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7461-7488.	1.2	18
61	Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. Atmospheric Chemistry and Physics, 2018, 18, 14493-14510.	1.9	18
62	Global sensitivity analysis of the GEOS-Chem chemical transport model: ozone and hydrogen oxides during ARCTAS (2008). Atmospheric Chemistry and Physics, 2017, 17, 3769-3784.	1.9	16
63	Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US. Atmospheric Chemistry and Physics, 2020, 20, 13091-13107.	1.9	14
64	Source and Chemistry of Hydroxymethanesulfonate (HMS) in Fairbanks, Alaska. Environmental Science & Technology, 2022, 56, 7657-7667.	4.6	14
65	Spatial and Temporal Variability of Brown Carbon in the United States: Implications for Direct Radiative Effects. Geophysical Research Letters, 2020, 47, e2020GL090332.	1.5	12
66	Sensitivity of Tropospheric Ozone Over the Southeast USA to Dry Deposition. Geophysical Research Letters, 2020, 47, e2020GL087158.	1.5	11
67	Global Impact of Lightningâ€Produced Oxidants. Geophysical Research Letters, 2021, 48, e2021GL095740.	1.5	10
68	Source and variability of formaldehyde (HCHO) at northern high latitudes: an integrated satellite, aircraft, and model study. Atmospheric Chemistry and Physics, 2022, 22, 7163-7178.	1.9	9
69	Differences in Ozone and Particulate Matter Between Ground Level and 20Âm Aloft are Frequent During Wintertime Surfaceâ€Based Temperature Inversions in Fairbanks, Alaska. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	8
70	Global sensitivity analysis of GEOS-Chem modeled ozone and hydrogen oxides during the INTEX campaigns. Atmospheric Chemistry and Physics, 2018, 18, 2443-2460.	1.9	5
71	Corrigendum to "Measurement of atmospheric nitrous acid at Blodgett Forest during BEARPEX2007" published in Atmos. Chem. Phys., 10, 6283-6294, 2010. Atmospheric Chemistry and Physics, 2010, 10, 6501-6501.	1.9	0