Stephan Borrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4681588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Holographic in-situ measurements of the spatial droplet distribution in stratiform clouds. Tellus, Series B: Chemical and Physical Meteorology, 2022, 50, 377.	0.8	11
2	Melting of atmospheric ice particles. , 2022, , 423-471.		0
3	Vertical Wind Tunnel Experiments and a Theoretical Study on the Microphysics of Melting Low-Density Graupel. Journals of the Atmospheric Sciences, 2022, 79, 1069-1087.	0.6	1
4	Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017. Atmospheric Chemistry and Physics, 2022, 22, 5877-5924.	1.9	16
5	Design, characterization, and first field deployment of a novel aircraft-based aerosol mass spectrometer combining the laser ablation and flash vaporization techniques. Atmospheric Measurement Techniques, 2022, 15, 2889-2921.	1.2	3
6	Aerosol filtration efficiency of household materials for homemade face masks: Influence of material properties, particle size, particle electrical charge, face velocity, and leaks. Aerosol Science and Technology, 2021, 55, 63-79.	1.5	128
7	Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68° N. Atmospheric Chemistry and Physics, 2021, 21, 989-1013.	1.9	18
8	Characterising optical array particle imaging probes: implications for small-ice-crystal observations. Atmospheric Measurement Techniques, 2021, 14, 1917-1939.	1.2	7
9	Comparative study on immersion freezing utilizing single-droplet levitation methods. Atmospheric Chemistry and Physics, 2021, 21, 3289-3316.	1.9	4
10	Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere. Atmospheric Chemistry and Physics, 2021, 21, 6509-6539.	1.9	5
11	Cleaner burning aviation fuels can reduce contrail cloudiness. Communications Earth & Environment, 2021, 2, .	2.6	92
12	In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017ÂAsian monsoon anticyclone – PartÂ1: Summary of StratoClim results. Atmospheric Chemistry and Physics, 2021, 21, 11689-11722.	1.9	11
13	In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 2: NPF inside ice clouds. Atmospheric Chemistry and Physics, 2021, 21, 13455-13481.	1.9	5
14	The Asian tropopause aerosol layer within the 2017 monsoon anticyclone: microphysical properties derived from aircraft-borne in situ measurements. Atmospheric Chemistry and Physics, 2021, 21, 15259-15282.	1.9	7
15	Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments. International Journal of Environmental Research and Public Health, 2020, 17, 8114.	1.2	158
16	Small ice particles at slightly supercooled temperatures in tropical maritime convection. Atmospheric Chemistry and Physics, 2020, 20, 3895-3904.	1.9	14
17	Influence of vessel characteristics and atmospheric processes on the gas and particle phase of ship emission plumes: in situ measurements in the Mediterranean Sea and around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2020, 20, 4713-4734.	1.9	35
18	A Wind Tunnel Investigation into the Aerodynamics of Lobed Hailstones. Atmosphere, 2020, 11, 494.	1.0	3

#	Article	IF	CITATIONS
19	Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmospheric Measurement Techniques, 2020, 13, 661-684.	1.2	12
20	Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmospheric Chemistry and Physics, 2020, 20, 4757-4785.	1.9	40
21	Holographic Observations of Centimeter-Scale Nonuniformities within Marine Stratocumulus Clouds. Journals of the Atmospheric Sciences, 2020, 77, 499-512.	0.6	8
22	Application of an O-ring pinch device as a constant-pressure inlet (CPI) for airborne sampling. Atmospheric Measurement Techniques, 2020, 13, 3651-3660.	1.2	9
23	Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environments with low aerosol particle concentrations. Atmospheric Measurement Techniques, 2020, 13, 5923-5953.	1.2	10
24	Application of holography and automated image processing for laboratory experiments on mass and fall speed of small cloud ice crystals. Atmospheric Chemistry and Physics, 2020, 20, 14889-14901.	1.9	5
25	Revisiting particle sizing using greyscale optical array probes: evaluation using laboratory experiments and synthetic data. Atmospheric Measurement Techniques, 2019, 12, 3067-3079.	1.2	11
26	Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nature Geoscience, 2019, 12, 608-612.	5.4	95
27	The Effect of Turbulence on the Accretional Growth of Graupel. Journals of the Atmospheric Sciences, 2019, 76, 3047-3061.	0.6	6
28	Remote biomass burning dominates southern West African air pollution during the monsoon. Atmospheric Chemistry and Physics, 2019, 19, 15217-15234.	1.9	29
29	Communal biofuel burning for district heating: Emissions and immissions from medium-sized (0.4 and) Tj ETQq1 I	0.78431	4 ggBT /Ove
30	Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmospheric Chemistry and Physics, 2018, 18, 921-961.	1.9	105
31	The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field Campaign: Overview and Research Highlights. Bulletin of the American Meteorological Society, 2018, 99, 83-104.	1.7	62
32	Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds. Atmospheric Chemistry and Physics, 2018, 18, 4439-4462.	1.9	11
33	Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring–summer transition in May 2014. Atmospheric Chemistry and Physics, 2018, 18, 4477-4496.	1.9	21
34	Assessing the role of anthropogenic and biogenic sources on PM ₁ over southern West Africa using aircraft measurements. Atmospheric Chemistry and Physics, 2018, 18, 757-772.	1.9	26
35	Statistical analysis of contrail to cirrus evolution during the Contrail and Cirrus Experiment (CONCERT). Atmospheric Chemistry and Physics, 2018, 18, 9803-9822.	1.9	13
36	The impact of mineral dust on cloud formation during the Saharan dust event in AprilÂ2014 over Europe. Atmospheric Chemistry and Physics, 2018, 18, 17545-17572.	1.9	19

#	Article	IF	CITATIONS
37	Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region. Atmospheric Chemistry and Physics, 2018, 18, 14979-15001.	1.9	39
38	Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmospheric Chemistry and Physics, 2018, 18, 6461-6482.	1.9	34
39	ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO. Bulletin of the American Meteorological Society, 2017, 98, 271-288.	1.7	107
40	Microphysical Properties of Ice Crystal Precipitation and Surface-Generated Ice Crystals in a High Alpine Environment in Switzerland. Journal of Applied Meteorology and Climatology, 2017, 56, 433-453.	0.6	11
41	How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions. Atmospheric Environment, 2017, 158, 216-226.	1.9	74
42	Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions. Atmospheric Environment, 2017, 166, 92-98.	1.9	13
43	Mixed-Phase Clouds: Progress and Challenges. Meteorological Monographs, 2017, 58, 5.1-5.50.	5.0	165
44	Sensitivities of Amazonian clouds to aerosols and updraft speed. Atmospheric Chemistry and Physics, 2017, 17, 10037-10050.	1.9	37
45	Sub-micrometer refractory carbonaceous particles in the polar stratosphere. Atmospheric Chemistry and Physics, 2017, 17, 12475-12493.	1.9	9
46	Uptake of nitric acid, ammonia, and organics in orographic clouds: mass spectrometric analyses of droplet residual and interstitial aerosol particles. Atmospheric Chemistry and Physics, 2017, 17, 1571-1593.	1.9	27
47	Chemistry of riming: the retention of organic and inorganic atmospheric trace constituents. Atmospheric Chemistry and Physics, 2017, 17, 9717-9732.	1.9	12
48	Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere. Atmospheric Chemistry and Physics, 2017, 17, 13747-13766.	1.9	49
49	Cloud droplets to drizzle: Contribution of transition drops to microphysical and optical properties of marine stratocumulus clouds. Geophysical Research Letters, 2017, 44, 8002-8010.	1.5	33
50	Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin. Atmospheric Chemistry and Physics, 2017, 17, 14433-14456.	1.9	58
51	Illustration of microphysical processes in Amazonian deep convective clouds in the gamma phase space: introduction and potential applications. Atmospheric Chemistry and Physics, 2017, 17, 14727-14746.	1.9	8
52	Long-lived contrails and convective cirrus above the tropical tropopause. Atmospheric Chemistry and Physics, 2017, 17, 2311-2346.	1.9	8
53	Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment. Atmospheric Chemistry and Physics, 2017, 17, 575-594.	1.9	39
54	Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign. Atmospheric Chemistry and Physics, 2017, 17, 7365-7386.	1.9	30

#	Article	IF	CITATIONS
55	A tandem approach for collocated measurements of microphysical and radiative cirrus properties. Atmospheric Measurement Techniques, 2017, 10, 3485-3498.	1.2	2
56	The ion trap aerosol mass spectrometer: field intercomparison with the ToF-AMS and the capability of differentiating organic compound classes via MS-MS. Atmospheric Measurement Techniques, 2017, 10, 1623-1637.	1.2	2
57	Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft. Atmospheric Measurement Techniques, 2016, 9, 5135-5162.	1.2	39
58	Airborne observations of the microphysical structure of two contrasting cirrus clouds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,510.	1.2	22
59	A microphysics guide to cirrus clouds – PartÂ1: Cirrus types. Atmospheric Chemistry and Physics, 2016, 16, 3463-3483.	1.9	151
60	Porous aerosol in degassing plumes of Mt. Etna and Mt. Stromboli. Atmospheric Chemistry and Physics, 2016, 16, 11883-11897.	1.9	10
61	Estimating N&Itsub>2&It/sub>O&Itsub>S&It/sub> uptake coefficients using ambient measurements of NO&Itsub>3&It/sub>, N&Itsub>2&It/sub>O&Itsub>5&It/sub>, CINO&Itsub>2&It/sub> and particle-phase nitrate. Atmospheric Chemistry and	1.9	71
62	Atmospheric aerosols in Rome, Italy: sources, dynamics and spatial variations during two seasons. Atmospheric Chemistry and Physics, 2016, 16, 15277-15299.	1.9	38
63	Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010. Atmospheric Chemistry and Physics, 2016, 16, 505-524.	1.9	53
64	Spectral optical layer properties of cirrus from collocated airborne measurements and simulations. Atmospheric Chemistry and Physics, 2016, 16, 7681-7693.	1.9	9
65	Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds. Atmospheric Chemistry and Physics, 2016, 16, 8405-8421.	1.9	26
66	Spectroscopic evidence of large aspherical <i>l̂²</i> -NAT particles involved in denitrification in the December 2011 Arctic stratosphere. Atmospheric Chemistry and Physics, 2016, 16, 9505-9532.	1.9	12
67	ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO. Bulletin of the American Meteorological Society, 2016, 97, 1885-1908.	1.7	124
68	Arctic low-level boundary layer clouds: in situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the top layer of liquid phase clouds. Atmospheric Chemistry and Physics, 2015, 15, 617-631.	1.9	49
69	In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmospheric Chemistry and Physics, 2015, 15, 9577-9591.	1.9	92
70	Aerosol mass spectrometry: particle–vaporizer interactions and their consequences for the measurements. Atmospheric Measurement Techniques, 2015, 8, 3811-3830.	1.2	53
71	Aerosol particle and trace gas emissions from earthworks, road construction, and asphalt paving in Germany: Emission factors and influence on local air quality. Atmospheric Environment, 2015, 122, 662-671.	1.9	39
72	In situ detection of stratosphereâ€ŧroposphere exchange of cirrus particles in the midlatitudes. Geophysical Research Letters, 2015, 42, 949-955.	1.5	23

#	Article	IF	CITATIONS
73	Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area. Atmospheric Measurement Techniques, 2014, 7, 279-299.	1.2	21
74	A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops. Atmospheric Research, 2014, 142, 67-78.	1.8	19
75	Cloud condensation nuclei (CCN) concentration in the Brazilian northeast semi-arid region: the influence of local circulation. Meteorology and Atmospheric Physics, 2014, 125, 159-176.	0.9	3
76	Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO ₃ -containing particles in the Arctic vortex. Atmospheric Chemistry and Physics, 2014, 14, 10785-10801.	1.9	56
77	Denitrification by large NAT particles: the impact of reduced settling velocities and hints on particle characteristics. Atmospheric Chemistry and Physics, 2014, 14, 11525-11544.	1.9	15
78	Enhancements of the refractory submicron aerosol fraction in the Arctic polar vortex: feature or exception?. Atmospheric Chemistry and Physics, 2014, 14, 12319-12342.	1.9	29
79	Particle surface area dependence of mineral dust in immersion freezing mode: investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel. Atmospheric Chemistry and Physics, 2014, 14, 12343-12355.	1.9	30
80	Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area. Atmospheric Chemistry and Physics, 2014, 14, 12931-12950.	1.9	22
81	Tropical deep convective life cycle: Cb-anvil cloud microphysics from high-altitude aircraft observations. Atmospheric Chemistry and Physics, 2014, 14, 13223-13240.	1.9	19
82	Nitric acid trihydrate nucleation and denitrification in the Arctic stratosphere. Atmospheric Chemistry and Physics, 2014, 14, 1055-1073.	1.9	62
83	In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010. Atmospheric Chemistry and Physics, 2014, 14, 4219-4235.	1.9	31
84	The retention of ammonia and sulfur dioxide during riming of ice particles and dendritic snow flakes: laboratory experiments in the Mainz vertical wind tunnel. Journal of Atmospheric Chemistry, 2013, 70, 131-150.	1.4	10
85	Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry. Atmospheric Environment, 2013, 77, 1043-1051.	1.9	25
86	Enhanced Role of Transition Metal Ion Catalysis During In-Cloud Oxidation of SO ₂ . Science, 2013, 340, 727-730.	6.0	286
87	Shapes and oscillations of raindrops with reduced surface tensions: Measurements at the Mainz vertical wind tunnel. Atmospheric Research, 2013, 119, 38-45.	1.8	12
88	Quantitative single-particle analysis with the Aerodyne aerosol mass spectrometer: development of a new classification algorithm and its application to field data. Atmospheric Measurement Techniques, 2013, 6, 3131-3145.	1.2	24
89	Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution. Atmospheric Chemistry and Physics, 2013, 13, 933-959.	1.9	101
90	Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany. Atmospheric Chemistry and Physics, 2013, 13, 3603-3618.	1.9	87

#	Article	IF	CITATIONS
91	Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results. Atmospheric Chemistry and Physics, 2013, 13, 9233-9268.	1.9	88
92	Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmospheric Chemistry and Physics, 2013, 13, 961-981.	1.9	391
93	In Situ, Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds. Bulletin of the American Meteorological Society, 2012, 93, ES29-ES34.	1.7	38
94	Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements. Atmospheric Measurement Techniques, 2012, 5, 1443-1457.	1.2	65
95	Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties. Atmospheric Chemistry and Physics, 2012, 12, 5511-5521.	1.9	91
96	ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight. Atmospheric Chemistry and Physics, 2012, 12, 1353-1365.	1.9	32
97	Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia. Atmospheric Chemistry and Physics, 2012, 12, 3761-3782.	1.9	17
98	Fractionation of sulfur isotopes during heterogeneous oxidation of SO ₂ on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer. Atmospheric Chemistry and Physics, 2012, 12, 4619-4631.	1.9	22
99	Sulfur isotope fractionation during heterogeneous oxidation of SO ₂ on mineral dust. Atmospheric Chemistry and Physics, 2012, 12, 4867-4884.	1.9	54
100	Penetration efficiency of nanometer-sized aerosol particles in tubes under turbulent flow conditions. Journal of Aerosol Science, 2012, 50, 11-25.	1.8	19
101	Urban emission hot spots as sources for remote aerosol deposition. Geophysical Research Letters, 2012, 39, .	1.5	23
102	Effects of atmospheric aerosol on the performance of environmentally sustainable passive air-breathing PEM fuel cells. International Journal of Hydrogen Energy, 2012, 37, 17203-17208.	3.8	11
103	A comparison of light backscattering and particle size distribution measurements in tropical cirrus clouds. Atmospheric Measurement Techniques, 2011, 4, 557-570.	1.2	15
104	Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008. Atmospheric Chemistry and Physics, 2011, 11, 10097-10123.	1.9	52
105	Mass-spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia. Atmospheric Chemistry and Physics, 2011, 11, 11415-11429.	1.9	59
106	Chemical, physical, and optical evolution of biomass burning aerosols: a case study. Atmospheric Chemistry and Physics, 2011, 11, 1491-1503.	1.9	122
107	Evidence for heterogeneous chlorine activation in the tropical UTLS. Atmospheric Chemistry and Physics, 2011, 11, 241-256.	1.9	33
108	In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus. Atmospheric Chemistry and Physics, 2011, 11, 5569-5590.	1.9	59

#	Article	IF	CITATIONS
109	In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism. Atmospheric Chemistry and Physics, 2011, 11, 9983-10010.	1.9	66
110	Variable lifetimes and loss mechanisms for NO ₃ and N ₂ O ₅ during the DOMINO campaign: contrasts between marine, urban and continental air. Atmospheric Chemistry and Physics, 2011, 11, 10853-10870.	1.9	55
111	Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling. Atmospheric Chemistry and Physics, 2011, 11, 201-214.	1.9	18
112	Wind tunnel experiments on the retention of trace gases during riming: nitric acid, hydrochloric acid, and hydrogen peroxide. Atmospheric Chemistry and Physics, 2011, 11, 11569-11579.	1.9	18
113	Characterization of a Newly Developed Aircraft-Based Laser Ablation Aerosol Mass Spectrometer (ALABAMA) and First Field Deployment in Urban Pollution Plumes over Paris During MEGAPOLI 2009. Aerosol Science and Technology, 2011, 45, 46-64.	1.5	53
114	3-D imaging and quantification of graupel porosity by synchrotron-based micro-tomography. Atmospheric Measurement Techniques, 2011, 4, 2225-2234.	1.2	5
115	Corrigendum to "An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)" published in Atmos. Chem. Phys., 10, 11415–11438, 2010. Atmospheric Chemistry an Physics, 2010, 10, 11565-11565.	d 1.9	4
116	Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility. Atmospheric Chemistry and Physics, 2010, 10, 5573-5592.	1.9	59
117	Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmospheric Chemistry and Physics, 2010, 10, 8077-8095.	1.9	127
118	Air mass origins influencing TTL chemical composition over West Africa during 2006 summer monsoon. Atmospheric Chemistry and Physics, 2010, 10, 10753-10770.	1.9	26
119	An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics, 2010, 10, 11415-11438.	1.9	170
120	An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale and roadmap. Atmospheric Chemistry and Physics, 2010, 10, 2237-2256.	1.9	58
121	Cross-hemispheric transport of central African biomass burning pollutants: implications for downwind ozone production. Atmospheric Chemistry and Physics, 2010, 10, 3027-3046.	1.9	58
122	In-situ observations of young contrails – overview and selected results from the CONCERT campaign. Atmospheric Chemistry and Physics, 2010, 10, 9039-9056.	1.9	93
123	Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophysical Research Letters, 2010, 37, .	1.5	138
124	In situ and lidar observations of tropopause subvisible cirrus clouds during TC4. Journal of Geophysical Research, 2010, 115, .	3.3	69
125	Aerosol layers from the 2008 eruptions of Mount Okmok and Mount Kasatochi: In situ upper troposphere and lower stratosphere measurements of sulfate and organics over Europe. Journal of Geophysical Research, 2010, 115, .	3.3	46
126	Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 2010, 329, 1513-1516.	6.0	541

#	Article	IF	CITATIONS
127	Shapes and oscillations of falling raindrops — A review. Atmospheric Research, 2010, 97, 416-425.	1.8	100
128	Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application. Atmospheric Measurement Techniques, 2009, 2, 243-258.	1.2	47
129	Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems. Atmospheric Measurement Techniques, 2009, 2, 479-494.	1.2	260
130	A new airborne tandem platform for collocated measurements of microphysical cloud and radiation properties. Atmospheric Measurement Techniques, 2009, 2, 147-158.	1.2	13
131	Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects. Atmospheric Measurement Techniques, 2009, 2, 33-46.	1.2	75
132	Drop Shapes and Axis Ratio Distributions: Comparison between 2D Video Disdrometer and Wind-Tunnel Measurements. Journal of Atmospheric and Oceanic Technology, 2009, 26, 1427-1432.	0.5	59
133	Riming of Graupel: Wind Tunnel Investigations of Collection Kernels and Growth Regimes. Journals of the Atmospheric Sciences, 2009, 66, 2359-2366.	0.6	25
134	A Wind Tunnel Study on the Shape, Oscillation, and Internal Circulation of Large Raindrops with Sizes between 2.5 and 7.5 mm. Journals of the Atmospheric Sciences, 2009, 66, 755-765.	0.6	67
135	Chemical Composition of Cloud Water in the Puerto Rican Tropical Trade Wind Cumuli. Water, Air, and Soil Pollution, 2009, 200, 3-14.	1.1	27
136	Inadvertent climate modification due to anthropogenic lead. Nature Geoscience, 2009, 2, 333-336.	5.4	91
137	Characterization of a Modified Expansion Condensation Particle Counter for Detection of Nanometer-Sized Particles. Aerosol Science and Technology, 2009, 43, 767-780.	1.5	12
138	Trace Detection of Organic Compounds in Complex Sample Matrixes by Single Photon Ionization Ion Trap Mass Spectrometry: Real-Time Detection of Security-Relevant Compounds and Online Analysis of the Coffee-Roasting Process. Analytical Chemistry, 2009, 81, 4456-4467.	3.2	38
139	Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin. Geophysical Research Letters, 2009, 36, .	1.5	171
140	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	6.0	3,374
141	Effective broadband refractive index retrieval by a white light optical particle counter. Physical Chemistry Chemical Physics, 2009, 11, 7943.	1.3	28
142	Evidence for ice particles in the tropical stratosphere from in-situ measurements. Atmospheric Chemistry and Physics, 2009, 9, 6775-6792.	1.9	100
143	Airborne measurements of the nitric acid partitioning in persistent contrails. Atmospheric Chemistry and Physics, 2009, 9, 8189-8197.	1.9	18
144	In situ measurements of particle number concentration, chemically resolved size distributions and black carbon content of traffic-related emissions on German motorways, rural roads and in city traffic. Atmospheric Environment, 2008, 42, 4257-4268.	1.9	47

#	Article	IF	CITATIONS
145	Unprecedented evidence for deep convection hydrating the tropical stratosphere. Geophysical Research Letters, 2008, 35, .	1.5	188
146	Comparison of Two Aerodynamic Lenses as an Inlet for a Single Particle Laser Ablation Mass Spectrometer. Aerosol Science and Technology, 2008, 42, 970-980.	1.5	26
147	Clouds and aerosols in Puerto Rico – a new evaluation. Atmospheric Chemistry and Physics, 2008, 8, 1293-1309.	1.9	72
148	Applicability of condensation particle counters to measure atmospheric clusters. Atmospheric Chemistry and Physics, 2008, 8, 4049-4060.	1.9	74
149	Characterization of the South Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2008, 8, 4711-4728.	1.9	143
150	Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002). Atmospheric Chemistry and Physics, 2008, 8, 603-623.	1.9	49
151	Detection of reactive nitrogen containing particles in the tropopause region – evidence for a tropical nitric acid trihydrate (NAT) belt. Atmospheric Chemistry and Physics, 2008, 8, 7421-7430.	1.9	34
152	In-situ observations and modeling of small nitric acid-containing ice crystals. Atmospheric Chemistry and Physics, 2007, 7, 3373-3383.	1.9	41
153	Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles. Atmospheric Chemistry and Physics, 2007, 7, 4887-4903.	1.9	93
154	Comparison of a Quadrupole and a Time-of-Flight Aerosol Mass Spectrometer during the Feldberg Aerosol Characterization Experiment 2004. Aerosol Science and Technology, 2007, 41, 679-691.	1.5	23
155	Microphysical and chemical characteristics of cloud droplet residuals and interstitial particles in continental stratocumulus clouds. Atmospheric Research, 2007, 86, 225-240.	1.8	17
156	Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ€influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007, 34, .	1.5	1,773
157	Development and characterization of an ion trap mass spectrometer for the on-line chemical analysis of atmospheric aerosol particles. International Journal of Mass Spectrometry, 2007, 265, 30-39.	0.7	15
158	Laboratory studies on the uptake of aromatic hydrocarbons by ice crystals during vapor depositional crystal growth. Atmospheric Environment, 2007, 41, 6156-6166.	1.9	17
159	Laboratory studies about the interaction of ammonia with ice crystals at temperatures between 0 and â~'20°C. Journal of Atmospheric Chemistry, 2007, 57, 73-84.	1.4	16
160	Aircraft-based operation of an aerosol mass spectrometer: Measurements of tropospheric aerosol composition. Journal of Aerosol Science, 2006, 37, 839-857.	1.8	30
161	Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles. International Journal of Mass Spectrometry, 2006, 258, 37-49.	0.7	260
162	Measurement of Ambient, Interstitial, and Residual Aerosol Particles on a Mountaintop Site in Central Sweden using an Aerosol Mass Spectrometer and a CVI. Journal of Atmospheric Chemistry, 2006, 56, 1-20.	1.4	47

Stephan Borrmann

#	Article	IF	CITATIONS
163	Uptake of gaseous aromatic hydrocarbons by non-growing ice crystals. Atmospheric Environment, 2006, 40, 5476-5485.	1.9	13
164	Digital crossed-beam holography forin situimaging of atmospheric ice particles. Journal of Optics, 2006, 8, 796-806.	1.5	29
165	Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles. Science, 2006, 312, 1375-1378.	6.0	871
166	Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements. Atmospheric Chemistry and Physics, 2005, 5, 3053-3069.	1.9	113
167	Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs). Atmospheric Chemistry and Physics, 2005, 5, 1371-1380.	1.9	160
168	Characterization of an Automated, Water-Based Expansion Condensation Nucleus Counter for Ultrafine Particles. Aerosol Science and Technology, 2005, 39, 1174-1183.	1.5	18
169	A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)—Instrument Description and First Field Deployment. Aerosol Science and Technology, 2005, 39, 637-658.	1.5	719
170	Nucleation Particles in Diesel Exhaust:  Composition Inferred from In Situ Mass Spectrometric Analysis. Environmental Science & Technology, 2005, 39, 6153-6161.	4.6	203
171	The ice nucleating ability of pollen. Atmospheric Research, 2005, 78, 182-189.	1.8	89
172	The APE-THESEO Tropical Campaign: An Overview. Journal of Atmospheric Chemistry, 2004, 48, 1-33.	1.4	33
173	Heterogeneous freezing of single sulfuric acid solution droplets: laboratory experiments utilizing an acoustic levitator. Atmospheric Chemistry and Physics, 2004, 4, 1925-1932.	1.9	31
174	Online mass spectrometric aerosol measurements during the MINOS campaign (Crete, August 2001). Atmospheric Chemistry and Physics, 2004, 4, 65-80.	1.9	34
175	Dehydration potential of ultrathin clouds at the tropical tropopause. Geophysical Research Letters, 2003, 30, .	1.5	54
176	Ultrathin Tropical Tropopause Clouds (UTTCs): I. Cloud morphology and occurrence. Atmospheric Chemistry and Physics, 2003, 3, 1083-1091.	1.9	83
177	Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms. Atmospheric Chemistry and Physics, 2003, 3, 1093-1100.	1.9	34
178	In situ measurements of background aerosol and subvisible cirrus in the tropical tropopause region. Journal of Geophysical Research, 2002, 107, AAC 8-1.	3.3	55
179	Global Air Pollution Crossroads over the Mediterranean. Science, 2002, 298, 794-799.	6.0	920
180	On the Transition of Contrails into Cirrus Clouds. Journals of the Atmospheric Sciences, 2000, 57, 464-480.	0.6	153

#	Article	IF	CITATIONS
181	Stratospheric aerosol measurements in the Arctic winter of 1996/1997 with the M-55 Geophysika high-altitude research aircraft. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 1088-1103.	0.8	13
182	APPLICATION OF THE T-MATRIX METHOD TO THE MEASUREMENT OF ASPHERICAL (ELLIPSOIDAL) PARTICLES WITH FORWARD SCATTERING OPTICAL PARTICLE COUNTERS. Journal of Aerosol Science, 2000, 31, 789-799.	1.8	86
183	Airborne observations of dust aerosol over the North Atlantic Ocean during ACE 2: Indications for heterogeneous ozone destruction. Journal of Geophysical Research, 2000, 105, 15263-15275.	3.3	120
184	Holographic in-situ measurements of the spatial droplet distribution in stratiform clouds. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 377-387.	0.8	9
185	In-line holography of cloud volumes applied to the measurement of raindrops and snowflakes. Atmospheric Research, 1998, 49, 199-212.	1.8	14
186	Heterogeneous chlorine chemistry in the tropopause region. Journal of Geophysical Research, 1997, 102, 21411-21429.	3.3	163
187	Near-field measurements on contrail properties from fuels with different sulfur content. Journal of Geophysical Research, 1997, 102, 29867-29880.	3.3	82
188	On the occurrence of ClO in cirrus clouds and volcanic aerosol in the tropopause region. Geophysical Research Letters, 1997, 24, 2011-2014.	1.5	40
189	Heterogeneous reactions on stratospheric background aerosols, volcanic sulfuric acid droplets, and type I polar stratospheric clouds: Effects of temperature fluctuations and differences in particle phase. Journal of Geophysical Research, 1997, 102, 3639-3648.	3.3	40
190	The potential of cirrus clouds for heterogeneous chlorine activation. Geophysical Research Letters, 1996, 23, 2133-2136.	1.5	135
191	Performance of a Focused Cavity Aerosol Spectrometer for Measurements in the Stratosphere of Particle Size in the 0.06–2.0-õm-Diameter Range. Journal of Atmospheric and Oceanic Technology, 1995, 12, 115-129.	0.5	89
192	Chemistry and aerosol measurements on the Geophysika stratospheric research aircraft: The airborne polar experiment. Physics and Chemistry of the Earth, 1995, 20, 97-101.	0.3	6
193	Aerosols as dynamical tracers in the lower stratosphere: Ozone versus aerosol correlation after the Mount Pinatubo eruption. Journal of Geophysical Research, 1995, 100, 11147.	3.3	17
194	The Kleiner Feldberg Cloud Experiment 1990. An overview. Journal of Atmospheric Chemistry, 1994, 19, 3-35.	1.4	75
195	Instrument intercomparison study on cloud droplet size distribution measurements: Holography vs. laser optical particle counter. Journal of Atmospheric Chemistry, 1994, 19, 253-258.	1.4	7
196	30.P.07 Application of single and double pulsed Fraunhofer in-line holography in cloud physics. Journal of Aerosol Science, 1994, 25, 521-522.	1.8	0
197	Instrument Intercomparison Study on Cloud Droplet Size Distribution Measurements: Holography vs. Laser Optical Particle Counter. , 1994, , 253-258.		0
198	In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion. Nature, 1993, 363, 509-514.	13.7	272

#	Article	IF	CITATIONS
199	On spatial distributions and inter-droplet distances measured in stratus clouds with in-line holography. Atmospheric Research, 1993, 29, 229-245.	1.8	22
200	Relationships between optical extinction, backscatter and aerosol surface and volume in the stratosphere following the eruption of Mt. Pinatubo. Geophysical Research Letters, 1993, 20, 2555-2558.	1.5	41
201	Inâ€situ measurements of changes in stratospheric aerosol and the N ₂ Oâ€aerosol relationship inside and outside of the polar vortex. Geophysical Research Letters, 1993, 20, 2559-2562.	1.5	25
202	Application Of Microholography for Ground-based In Situ Measurements in Stratus Cloud Layers: A Case Study. Journal of Atmospheric and Oceanic Technology, 1993, 10, 277-293.	0.5	32
203	Aerosol size distributions in the marginal ice zone during the 1983 Marginal Ice Zone Experiment. Journal of Geophysical Research, 1987, 92, 6971-6976.	3.3	2
204	Wind tunnel experiments on the resuspension of sub-micrometer particles from a sand surface. Atmospheric Environment, 1987, 21, 1891-1898.	1.1	24
205	In-Situ Measurements of the Cloud Microphysical Structure Using Holography. , 0, , 196-209.		0