Andrea Vortkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4680634/publications.pdf

Version: 2024-02-01

46 papers

3,216 citations

304368 22 h-index 288905 40 g-index

49 all docs 49 docs citations

times ranked

49

3969 citing authors

#	Article	IF	CITATIONS
1	Heparan Sulfate Deficiency in Cartilage: Enhanced BMP-Sensitivity, Proteoglycan Production and an Anti-Apoptotic Expression Signature after Loading. International Journal of Molecular Sciences, 2021, 22, 3726.	1.8	4
2	Murine Limb Explant Cultures to Assess Cartilage Development. Methods in Molecular Biology, 2021, 2230, 139-149.	0.4	0
3	Wnt5a is a transcriptional target of Gli3 and Trps1 at the onset of chondrocyte hypertrophy. Developmental Biology, 2020, 457, 104-118.	0.9	14
4	Chondrocytes respond to an altered heparan sulfate composition with distinct changes of heparan sulfate structure and increased levels of chondroitin sulfate. Matrix Biology, 2020, 93, 43-59.	1.5	13
5	Epigenetic Mechanisms Mediating Cell State Transitions in Chondrocytes. Journal of Bone and Mineral Research, 2020, 36, 968-985.	3.1	4
6	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones. PLoS ONE, 2019, 14, e0218230.	1.1	11
7	A newly discovered stem cell that keeps bones growing. Nature, 2019, 567, 178-179.	13.7	13
8	A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nature Metabolism, 2019, 1, 236-250.	5.1	221
9	Fourâ€jointed knockâ€out delays renal failure in an ADPKD model with kidney injury. Journal of Pathology, 2019, 249, 114-125.	2.1	6
10	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones., 2019, 14, e0218230.		0
11	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones., 2019, 14, e0218230.		O
12	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones., 2019, 14, e0218230.		0
13	Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones., 2019, 14, e0218230.		O
14	Signaling systems affecting the severity of multiple osteochondromas. Bone, 2018, 111, 71-81.	1.4	11
15	Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets. Frontiers in Physiology, 2017, 8, 1036.	1.3	24
16	Molecular Control of Cartilage Differentiation. , 2016, , 191-213.		0
17	Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. Journal of Experimental Medicine, 2016, 213, 2759-2772.	4.2	25
18	Survival protein anoctaminâ€6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB Journal, 2016, 30, 727-737.	0.2	52

#	Article	IF	CITATIONS
19	Altered heparan sulfate structure in Glceâ^'/â^' mice leads to increased Hedgehog signaling in endochondral bones. Matrix Biology, 2016, 49, 82-92.	1.5	16
20	Anoctamin-6 Controls Bone Mineralization by Activating the Calcium Transporter NCX1. Journal of Biological Chemistry, 2015, 290, 6270-6280.	1.6	35
21	Gene Expression Profiling Reveals Similarities between the Spatial Architectures of Postnatal Articular and Growth Plate Cartilage. PLoS ONE, 2014, 9, e103061.	1.1	25
22	Cartilage Explant Cultures. Methods in Molecular Biology, 2014, 1130, 89-97.	0.4	11
23	Signaling Domain of Sonic Hedgehog as Cannibalistic Calcium-Regulated Zinc-Peptidase. PLoS Computational Biology, 2014, 10, e1003707.	1.5	10
24	Inactivation of <i>Patched1</i> in Murine Chondrocytes Causes Spinal Fusion Without Inflammation. Arthritis and Rheumatology, 2014, 66, 831-840.	2.9	12
25	Heparan sulfate as a regulator of endochondral ossification and osteochondroma development. Matrix Biology, 2014, 34, 55-63.	1.5	41
26	Reprint of: Heparan sulfate as a regulator of endochondral ossification and osteochondroma development. Matrix Biology, 2014, 35, 239-247.	1.5	17
27	Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues. Journal of Bone and Mineral Research, 2013, 28, 246-259.	3.1	106
28	The multi zinc-finger protein Trps1 acts as a regulator of histone deacetylation during mitosis. Cell Cycle, 2013, 12, 2219-2232.	1.3	24
29	Hoxall and Hoxdll Regulate Chondrocyte Differentiation Upstream of Runx2 and Shox2 in Mice. PLoS ONE, 2012, 7, e43553.	1.1	43
30	Chondrocyte Proliferation and Differentiation. Endocrine Development, 2011, 21, 1-11.	1.3	93
31	Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatric Nephrology, 2010, 25, 625-631.	0.9	81
32	Expression patterns of sulfatase genes in the developing mouse embryo. Developmental Dynamics, 2010, 239, 1779-1788.	0.8	25
33	Gli2 activator function in preosteoblasts is sufficient to mediate ihhâ€dependent osteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification. Developmental Dynamics, 2010, 239, 1818-1826.	0.8	37
34	A mouse model of osteochondromagenesis from clonal inactivation of <i>Ext1</i> in chondrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2054-2059.	3.3	109
35	Trps1, a regulator of chondrocyte proliferation and differentiation, interacts with the activator form of Gli3. Developmental Biology, 2009, 328, 40-53.	0.9	75
36	Redundant function of the heparan sulfate 6â€Oâ€endosulfatases Sulf1 and Sulf2 during skeletal development. Developmental Dynamics, 2008, 237, 339-353.	0.8	82

3

#	Article	IF	CITATION
37	Ucma â€" A novel secreted factor represents a highly specific marker for distal chondrocytes. Matrix Biology, 2008, 27, 3-11.	1.5	46
38	The role of growth factors in chondrogenesis and osteogenesis. Current Opinion in Orthopaedics, 2006, 17, 405-411.	0.3	1
39	Hedgehog signaling in skeletal development. Birth Defects Research Part C: Embryo Today Reviews, 2006, 78, 267-279.	3.6	96
40	Expression of Fgf and Tgf \hat{l}^2 signaling related genes during embryonic endochondral ossification. Gene Expression Patterns, 2005, 6, 102-109.	0.3	58
41	Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development (Cambridge), 2005, 132, 5249-5260.	1.2	136
42	Ext1-Dependent Heparan Sulfate Regulates the Range of Ihh Signaling during Endochondral Ossification. Developmental Cell, 2004, 6, 801-813.	3.1	255
43	Expression of Trps1 during mouse embryonic development. Mechanisms of Development, 2002, 119, S117-S120.	1.7	33
44	Interaction of FGF, Ihh/Pthlh, and BMP Signaling Integrates Chondrocyte Proliferation and Hypertrophic Differentiation. Developmental Cell, 2002, 3, 439-449.	3.1	414
45	BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development (Cambridge), 2001, 128, 4523-4534.	1.2	382
46	GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature, 1991, 352, 539-540.	13.7	553