Cheng Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4680620/publications.pdf

Version: 2024-02-01

2,344	186254	315719
citations	h-index	g-index
39	39	3311
docs citations	times ranked	citing authors
		2,344 28 citations h-index 39 39

#	Article	lF	Citations
1	Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B: Environmental, 2017, 216, 114-121.	20.2	217
2	CoO and g-C3N4 complement each other for highly efficient overall water splitting under visible light. Applied Catalysis B: Environmental, 2018, 226, 412-420.	20.2	176
3	Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Applied Catalysis B: Environmental, 2019, 242, 178-185.	20.2	174
4	Carbon Dots as Fillers Inducing Healing/Selfâ€Healing and Anticorrosion Properties in Polymers. Advanced Materials, 2017, 29, 1701399.	21.0	142
5	A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nature Communications, 2017, 8, 1828.	12.8	140
6	Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 19800-19807.	10.3	100
7	Enhanced Activity for CO ₂ Electroreduction on a Highly Active and Stable Ternary Au-CDots-C ₃ N ₄ Electrocatalyst. ACS Catalysis, 2018, 8, 188-197.	11.2	94
8	High-performance NiO/g-C ₃ N ₄ composites for visible-light-driven photocatalytic overall water splitting. Inorganic Chemistry Frontiers, 2018, 5, 1646-1652.	6.0	92
9	One-step synthesis of chiral carbon quantum dots and their enantioselective recognition. RSC Advances, 2016, 6, 59956-59960.	3 . 6	78
10	Photocatalytic H ₂ O ₂ and H ₂ Generation from Living <i>Chlorella vulgaris</i> and Carbon Micro Particle Comodified gâ€C ₃ N ₄ . Advanced Energy Materials, 2018, 8, 1802525.	19.5	78
11	Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. ACS Catalysis, 2017, 7, 1637-1645.	11.2	66
12	Carbon-Supported Oxygen Vacancy-Rich Co ₃ O ₄ for Robust Photocatalytic H ₂ O ₂ Production via Coupled Water Oxidation and Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 8737-8746.	5.1	66
13	A Pt–Co ₃ O ₄ –CD electrocatalyst with enhanced electrocatalytic performance and resistance to CO poisoning achieved by carbon dots and Co ₃ O ₄ for direct methanol fuel cells. Nanoscale, 2017, 9, 5467-5474.	5 . 6	65
14	Achieving electroreduction of CO ₂ to CH ₃ OH with high selectivity using a pyrite–nickel sulfide nanocomposite. RSC Advances, 2017, 7, 1376-1381.	3 . 6	60
15	Cobalt phosphide/carbon dots composite as an efficient electrocatalyst for oxygen evolution reaction. Dalton Transactions, 2018, 47, 5459-5464.	3.3	58
16	Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires. Angewandte Chemie - International Edition, 2018, 57, 5374-5378.	13.8	57
17	New Insight of Water-Splitting Photocatalyst: H ₂ O ₂ -Resistance Poisoning and Photothermal Deactivation in Sub-micrometer CoO Octahedrons. ACS Applied Materials & Discrete Representation of the Photothermal Deactivation in Sub-micrometer CoO Octahedrons. ACS Applied Materials & Discrete Representation of the Photothermal Photocatalysis and Photocatalys	8.0	51
18	Cu-CDots nanocorals as electrocatalyst for highly efficient CO ₂ reduction to formate. Nanoscale, 2017, 9, 298-304.	5. 6	49

#	Article	IF	CITATIONS
19	Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst. Applied Catalysis B: Environmental, 2018, 237, 166-174.	20.2	46
20	Negatively Charged Carbon Nanodots with Bacteria Resistance Ability for Highâ€Performance Antibiofilm Formation and Anticorrosion Coating Design. Small, 2019, 15, e1900007.	10.0	46
21	Cascaded photo-potential in a carbon dot-hematite system driving overall water splitting under visible light. Nanoscale, 2018, 10, 2454-2460.	5 . 6	43
22	Synergistic Cu@CoOx core-cage structure on carbon layers as highly active and durable electrocatalysts for methanol oxidation. Applied Catalysis B: Environmental, 2019, 244, 795-801.	20.2	42
23	A g-C ₃ N ₄ based photoelectrochemical cell using O ₂ /H ₂ O redox couples. Energy and Environmental Science, 2018, 11, 1841-1847.	30.8	41
24	Strong coupling effect at the interface of cobalt phosphate-carbon dots boost photocatalytic water splitting. Journal of Colloid and Interface Science, 2018, 530, 256-263.	9.4	38
25	Highly Selective and Efficient Electroreduction of Carbon Dioxide to Carbon Monoxide with Phosphate Silver-Derived Coral-like Silver. ACS Sustainable Chemistry and Engineering, 2019, 7, 3536-3543.	6.7	35
26	Air activation by a metal-free photocatalyst for "totally-green―hydrocarbon selective oxidation. Catalysis Science and Technology, 2016, 6, 7252-7258.	4.1	32
27	Interpretable molecular models for molybdenum disulfide and insight into selective peptide recognition. Chemical Science, 2020, 11, 8708-8722.	7.4	32
28	Understanding the Surface Reactivity of Ligand-Protected Metal Nanoparticles for Biomass Upgrading. ACS Catalysis, 2020, 10, 5462-5474.	11.2	32
29	CoMn-S/CDs nanocomposite for effective long wavelength visible-light-driven photocatalytic water splitting. Applied Catalysis B: Environmental, 2018, 226, 295-302.	20.2	30
30	A nitrogen and boron co-doped metal-free carbon electrocatalyst for an efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2018, 5, 2985-2991.	6.0	30
31	C–O ^{â^'} –K ⁺ (Na ⁺) groups in non-doped carbon as active sites for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8955-8961.	10.3	28
32	Efficient photocatalytic water splitting through titanium silicalite stabilized CoO nanodots. Nanoscale, 2019, 11, 15984-15990.	5.6	28
33	Highly selective conversion of CO ₂ to C ₂ H ₆ on graphene modified chlorophyll Cu through multi-electron process for artificial photosynthesis. Nanoscale, 2019, 11, 22980-22988.	5 . 6	22
34	Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106965119.	7.1	19
35	Highly mesoporous carbon nitride photocatalysts for efficient and stable overall water splitting. Applied Surface Science, 2020, 509, 144706.	6.1	15
36	Carbon dots modified WO2-NaxWO3 composite as UV-Vis-NIR broad spectrum-driven photocatalyst for overall water splitting. Catalysis Today, 2020, 340, 152-160.	4.4	14

#	Article	IF	CITATIONS
3	Mesoporous carbon nanoparticles: a super catalyst support for fuel cells. New Journal of Chemistry, 2015, 39, 8667-8672.	2.8	5