
Leszek Lisowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4680573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel human liver-tropic AAV variants define transferable domains that markedly enhance the human tropism of AAV7 and AAV8. Molecular Therapy - Methods and Clinical Development, 2022, 24, 88-101.	1.8	21
2	AAV-p40 Bioengineering Platform for Variant Selection Based on Transgene Expression. Human Gene Therapy, 2022, 33, 664-682.	1.4	16
3	The Balance of Stromal BMP Signaling Mediated by GREM1 and ISLR Drives Colorectal Carcinogenesis. Gastroenterology, 2021, 160, 1224-1239.e30.	0.6	76
4	A drug-tunable Flt23k gene therapy for controlled intervention in retinal neovascularization. Angiogenesis, 2021, 24, 97-110.	3.7	23
5	Neurological Disorders Associated with WWOX Germline Mutations—A Comprehensive Overview. Cells, 2021, 10, 824.	1.8	15
6	Single amino acid insertion allows functional transduction of murine hepatocytes with human liver tropic AAV capsids. Molecular Therapy - Methods and Clinical Development, 2021, 21, 607-620.	1.8	13
7	The self-peptide repertoire plays a critical role in transplant tolerance induction. Journal of Clinical Investigation, 2021, 131, .	3.9	10
8	The intersection of vector biology, gene therapy, and hemophilia. Research and Practice in Thrombosis and Haemostasis, 2021, 5, e12586.	1.0	13
9	Safety and efficacy of an engineered hepatotropic AAV gene therapy for ornithine transcarbamylase deficiency in cynomolgus monkeys. Molecular Therapy - Methods and Clinical Development, 2021, 23, 135-146.	1.8	21
10	Selection of a novel AAV2/TNFAIP3 vector for local suppression of islet xenograft inflammation. Xenotransplantation, 2021, 28, e12669.	1.6	4
11	Potential Applications for Targeted GeneÂTherapy to Protect Against Anthracycline Cardiotoxicity. JACC: CardioOncology, 2021, 3, 650-662.	1.7	9
12	Systemic AAV8-mediated delivery of a functional copy of muscle glycogen phosphorylase (Pygm) ameliorates disease in a murine model of McArdle disease. Human Molecular Genetics, 2020, 29, 20-30.	1.4	12
13	Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing. Nature Communications, 2020, 11, 4871.	5.8	46
14	Restoring the natural tropism of AAV2 vectors for human liver. Science Translational Medicine, 2020, 12, .	5.8	41
15	Attenuation of Heparan Sulfate Proteoglycan Binding Enhances InÂVivo Transduction of Human Primary Hepatocytes with AAV2. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1139-1154.	1.8	29
16	High-Throughput <i>In Vitro</i> , <i>Ex Vivo,</i> and <i>In Vivo</i> Screen of Adeno-Associated Virus Vectors Based on Physical and Functional Transduction. Human Gene Therapy, 2020, 31, 575-589.	1.4	65
17	Efficient inÂvivo editing of OTC-deficient patient-derived primary human hepatocytes. JHEP Reports, 2020, 2, 100065.	2.6	18
18	Age-Related Seroprevalence of Antibodies Against AAV-LKO3 in a UK Population Cohort. Human Gene Therapy, 2019, 30, 79-87.	1.4	51

Leszek Lisowski

#	Article	IF	CITATIONS
19	Targeting Adeno-Associated Virus Vectors for Local Delivery to Fractures and Systemic Delivery to the Skeleton. Molecular Therapy - Methods and Clinical Development, 2019, 15, 101-111.	1.8	15
20	A User's Guide to the Inverted Terminal Repeats of Adeno-Associated Virus. Human Gene Therapy Methods, 2019, 30, 206-213.	2.1	33
21	Optogenetic approaches to vision restoration. Experimental Eye Research, 2019, 178, 15-26.	1.2	77
22	Codon-Optimization of Wild-Type Adeno-Associated Virus Capsid Sequences Enhances DNA Family Shuffling while Conserving Functionality. Molecular Therapy - Methods and Clinical Development, 2019, 12, 71-84.	1.8	22
23	Bioengineered AAV Capsids with Combined High Human Liver Transduction InÂVivo and Unique Humoral Seroreactivity. Molecular Therapy, 2018, 26, 289-303.	3.7	130
24	Directed Evolution of Adeno-Associated Virus Vectors in Human Cardiomyocytes for Cardiac Gene Therapy. Heart Lung and Circulation, 2018, 27, 1270-1273.	0.2	4
25	An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis. Cell, 2018, 175, 530-543.e24.	13.5	89
26	In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation. Molecular Therapy, 2018, 26, 1818-1827.	3.7	111
27	Bioengineered Viral Platform for Intramuscular Passive Vaccine Delivery to Human Skeletal Muscle. Molecular Therapy - Methods and Clinical Development, 2018, 10, 144-155.	1.8	21
28	ldentification of liver-specific enhancer–promoter activity in the 3′ untranslated region of the wild-type AAV2 genome. Nature Genetics, 2017, 49, 1267-1273.	9.4	78
29	Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. Nature Communications, 2017, 8, 2053.	5.8	78
30	737. RNAi Induced Hepatotoxicity Results from a Functional Depletion of the First Synthesized Isoform of miR-122. Molecular Therapy, 2016, 24, S290-S291.	3.7	0
31	RNA interference–induced hepatotoxicity results from loss of the first synthesized isoform of microRNA-122 in mice. Nature Medicine, 2016, 22, 557-562.	15.2	32
32	Adeno-associated virus serotypes for gene therapeutics. Current Opinion in Pharmacology, 2015, 24, 59-67.	1.7	113
33	Human <i>COL7A1</i> -corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Science Translational Medicine, 2014, 6, 264ra163.	5.8	194
34	Somatic Correction of Junctional Epidermolysis Bullosa by a Highly Recombinogenic AAV Variant. Molecular Therapy, 2014, 22, 725-733.	3.7	60
35	Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature, 2014, 506, 382-386.	13.7	376
36	Genome Editing of Isogenic Human Induced Pluripotent Stem Cells Recapitulates Long QT Phenotype for Drug Testing. Journal of the American College of Cardiology, 2014, 64, 451-459.	1.2	149

Leszek Lisowski

#	Article	IF	CITATIONS
37	Second Generation Codon Optimized Minicircle (CoMiC) for Nonviral Reprogramming of Human Adult Fibroblasts. Methods in Molecular Biology, 2014, 1181, 1-13.	0.4	7
38	Comparison of transduction efficiency among various lentiviruses containing GFP reporter in bone marrow hematopoietic stem cell transplantation. Experimental Hematology, 2013, 41, 934-943.	0.2	5
39	The anti-genomic (negative) strand of Hepatitis C Virus is not targetable by shRNA. Nucleic Acids Research, 2013, 41, 3688-3698.	6.5	12
40	AAV Vectors Containing rDNA Homology Display Increased Chromosomal Integration and Transgene Persistence. Molecular Therapy, 2012, 20, 1902-1911.	3.7	36
41	Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression. Molecular Therapy, 2012, 20, 1912-1923.	3.7	27
42	Genome Editing of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells With Zinc Finger Nucleases for Cellular Imaging. Circulation Research, 2012, 111, 1494-1503.	2.0	99
43	rAAV-Mediated Tumorigenesis: Still Unresolved After an AAV Assault. Molecular Therapy, 2012, 20, 2014-2017.	3.7	33
44	Transient <i>In Vivo</i> β-Globin Production After Lentiviral Gene Transfer to Hematopoietic Stem Cells in the Nonhuman Primate. Human Gene Therapy, 2009, 20, 563-572.	1.4	12
45	Supplying Clotting Factors From Hematopoietic Stem Cell–derived Erythroid and Megakaryocytic Lineage Cells. Molecular Therapy, 2009, 17, 1994-1999.	3.7	12
46	Current status of globin gene therapy for the treatment of βâ€ŧhalassaemia. British Journal of Haematology, 2008, 141, 335-345.	1.2	35
47	Erythroid-specific Human Factor IX Delivery From In Vivo Selected Hematopoietic Stem Cells Following Nonmyeloablative Conditioning in Hemophilia B Mice. Molecular Therapy, 2008, 16, 1745-1752.	3.7	39
48	Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in β-thalassemic mice. Blood, 2007, 110, 4175-4178.	0.6	50
49	A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nature Biotechnology, 2006, 24, 89-94.	9.4	114
50	Progress Toward the Genetic Treatment of the \hat{I}^2 -Thalassemias. Annals of the New York Academy of Sciences, 2005, 1054, 78-91.	1.8	36
51	Globin gene transfer for treatment of the β-thalassemias and sickle cell disease. Best Practice and Research in Clinical Haematology, 2004, 17, 517-534.	0.7	7
52	Globin gene transfer: a paradigm for transgene regulation and vector safety. Gene Therapy and Regulation, 2003, 2, 149-175.	0.3	9