List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4680529/publications.pdf Version: 2024-02-01

		13099	6654
323	26,141	68	156
papers	citations	h-index	g-index
335	335	335	32755
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3, 563-568.	31.5	5,431
2	Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 2006, 44, 1624-1652.	10.3	3,611
3	Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Advanced Materials, 2006, 18, 689-706.	21.0	1,504
4	Recent Advances in Research on Carbon Nanotube–Polymer Composites. Advanced Materials, 2010, 22, 1672-1688.	21.0	788
5	High Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase. Advanced Functional Materials, 2004, 14, 791-798.	14.9	575
6	Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules. Journal of Physical Chemistry C, 2013, 117, 16616-16631.	3.1	499
7	Oxygen Radical Functionalization of Boron Nitride Nanosheets. Journal of the American Chemical Society, 2012, 134, 18758-18771.	13.7	464
8	Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications. Nanoscale Research Letters, 2008, 3, .	5.7	436
9	Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 2014, 9, 85-101.	11.9	270
10	Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nature Food, 2020, 1, 746-754.	14.0	270
11	Application of semiconductor quantum dots in bioimaging and biosensing. Journal of Materials Chemistry B, 2017, 5, 6701-6727.	5.8	265
12	Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts. Nanomaterials, 2014, 4, 222-241.	4.1	260
13	A Magnetic-Nanoparticle-Supported 4-N,N-Dialkylaminopyridine Catalyst: Excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability. Angewandte Chemie - International Edition, 2007, 46, 4329-4332.	13.8	258
14	Chiral highly luminescent CdS quantum dots. Chemical Communications, 2007, , 3900.	4.1	243
15	A Generic Organometallic Approach toward Ultra-Strong Carbon Nanotube Polymer Composites. Journal of the American Chemical Society, 2004, 126, 10226-10227.	13.7	227
16	Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. Journal of Materials Chemistry, 2011, 21, 16806.	6.7	227
17	Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments. Nano Letters, 2007, 7, 3452-3461.	9.1	219
18	Carbon Nanomaterials for Dye‣ensitized Solar Cell Applications: A Bright Future. Advanced Energy Materials, 2011, 1, 472-485.	19.5	196

#	Article	IF	CITATIONS
19	Chiral Shells and Achiral Cores in CdS Quantum Dots. Nano Letters, 2008, 8, 2452-2457.	9.1	186
20	Disiloxanediolates and polyhedral metallasilsesquioxanes of the early transition metals and f-elements. Coordination Chemistry Reviews, 2000, 206-207, 321-368.	18.8	172
21	Magnetic core-shell nanoparticles for drug delivery by nebulization. Journal of Nanobiotechnology, 2013, 11, 1.	9.1	172
22	Quantum dots for Luminescent Solar Concentrators. Journal of Materials Chemistry, 2012, 22, 16687.	6.7	169
23	Colloidal quantum dots for optoelectronics. Journal of Materials Chemistry A, 2017, 5, 13252-13275.	10.3	167
24	ZnO Nanostructures for Drug Delivery and Theranostic Applications. Nanomaterials, 2018, 8, 268.	4.1	167
25	High-Content Screening as a Universal Tool for Fingerprinting of Cytotoxicity of Nanoparticles. ACS Nano, 2008, 2, 928-938.	14.6	165
26	Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers. Nano Letters, 2011, 11, 3341-3345.	9.1	159
27	Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging. Journal of Materials Chemistry, 2006, 16, 2896.	6.7	154
28	Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods. Nano Letters, 2015, 15, 2844-2851.	9.1	153
29	Versatile Solution Phase Triangular Silver Nanoplates for Highly Sensitive Plasmon Resonance Sensing. ACS Nano, 2010, 4, 55-64.	14.6	150
30	Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents. Journal of the American Chemical Society, 2008, 130, 4214-4215.	13.7	142
31	Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain, Behavior, and Immunity, 2018, 68, 183-196.	4.1	137
32	Wavelength, Concentration, and Distance Dependence of Nonradiative Energy Transfer to a Plane of Gold Nanoparticles. ACS Nano, 2012, 6, 9283-9290.	14.6	131
33	Experimental and Theoretical Investigation of the Distance Dependence of Localized Surface Plasmon Coupled FA¶rster Resonance Energy Transfer. ACS Nano, 2014, 8, 1273-1283.	14.6	130
34	The First Magnetic Nanoparticleâ€Supported Chiral DMAP Analogue: Highly Enantioselective Acylation and Excellent Recyclability. Chemistry - A European Journal, 2009, 15, 5669-5673.	3.3	128
35	Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking. Carbon, 2010, 48, 3376-3381.	10.3	128
36	A Simple Solâ^'Gel Processing for the Development of High-Temperature Stable Photoactive Anatase Titania. Chemistry of Materials, 2007, 19, 4474-4481.	6.7	122

#	Article	IF	CITATIONS
37	Fabrication of highly transparent and conducting PEDOT:PSS films using a formic acid treatment. Journal of Materials Chemistry C, 2014, 2, 764-770.	5.5	119
38	Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: Effect of donor-donor interactions. Physical Review B, 2011, 83, .	3.2	111
39	Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Applied Physics Letters, 2006, 89, 253118.	3.3	109
40	Preparation of chiral quantum dots. Nature Protocols, 2015, 10, 558-573.	12.0	109
41	The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties. Carbon, 2010, 48, 2825-2830.	10.3	103
42	Preparation of multifunctional nanoparticles and their assemblies. Nature Protocols, 2012, 7, 1677-1693.	12.0	103
43	Highly Enantioselective Desymmetrization of <i>Meso</i> Anhydrides by a Bifunctional Thiourea-Based Organocatalyst at Low Catalyst Loadings and Room Temperature. Journal of Organic Chemistry, 2008, 73, 2454-2457.	3.2	102
44	From Ag Nanoprisms to Triangular AuAg Nanoboxes. Advanced Functional Materials, 2010, 20, 1329-1338.	14.9	100
45	"Jelly Dotsâ€: Synthesis and Cytotoxicity Studies of CdTe Quantum Dot–Gelatin Nanocomposites. Small, 2007, 3, 1152-1156.	10.0	99
46	The chiral nano-world: chiroptically active quantum nanostructures. Nanoscale Horizons, 2016, 1, 14-26.	8.0	99
47	Chiral luminescent CdS nano-tetrapods. Chemical Communications, 2010, 46, 6072.	4.1	97
48	Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS ₂ Nanostructures. ACS Nano, 2018, 12, 954-964.	14.6	93
49	Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. Journal of Materials Chemistry, 2006, 16, 4206.	6.7	90
50	Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Applied Physics Letters, 2008, 93, .	3.3	90
51	Synthesis and spectroscopic studies of chiral CdSe quantum dots. Journal of Materials Chemistry, 2010, 20, 8350.	6.7	87
52	Organocatalytic Asymmetric Addition of Alcohols and Thiols to Activated Electrophiles: Efficient Dynamic Kinetic Resolution and Desymmetrization Protocols. Journal of Organic Chemistry, 2008, 73, 6409-6412.	3.2	85
53	Highâ€Strength, Highâ€Toughness Composite Fibers by Swelling Kevlar in Nanotube Suspensions. Small, 2009, 5, 466-469.	10.0	85
54	Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers. Physical Review B, 2010, 81, .	3.2	85

#	Article	IF	CITATIONS
55	The immobilisation of chiral organocatalysts on magnetic nanoparticles: the support particle cannot always be considered inert. Organic and Biomolecular Chemistry, 2011, 9, 7929.	2.8	85
56	Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications. Cellular and Molecular Life Sciences, 2012, 69, 389-404.	5.4	84
57	Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles. Chemical Communications, 2011, 47, 7383.	4.1	82
58	Graphene, carbon nanotube and ionic liquid mixtures: towards new quasi-solid state electrolytes for dye sensitised solar cells. Journal of Materials Chemistry, 2011, 21, 16990.	6.7	82
59	Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. International Journal of Nanomedicine, 2012, 7, 2943.	6.7	78
60	CdTe Nanoparticles Display Tropism to Core Histones and Histoneâ€Rich Cell Organelles. Small, 2008, 4, 2006-2015.	10.0	77
61	Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures. Nanomaterials, 2019, 9, 85.	4.1	76
62	High content analysis of the biocompatibility of nickel nanowires. Journal of Magnetism and Magnetic Materials, 2009, 321, 1341-1345.	2.3	75
63	Covalently Functionalized Hexagonal Boron Nitride Nanosheets by Nitrene Addition. Chemistry - A European Journal, 2012, 18, 10808-10812.	3.3	75
64	Chlorin e6–ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy. Nanotechnology, 2015, 26, 055102.	2.6	72
65	Activation of a Cî—,O bond by reaction of a tris(cyclopentadienyl)lanthanide complex with an alkali metal in dimethoxyethane (DME); crystal structures of [Ndî+C5H3(SiMe3)2-1,32(μ-OMe)2Li(DME)] and [{Ce(Î+C5H3tBu2-1,3)2(μ-OMe)2]. Journal of Organometallic Chemistry, 1995, 499, 213-219.	1.8	70
66	Synthesis and Characterization of Organolanthanidocene(III) (Ln = La, Ce, Pr, Nd) Complexes Containing the 1,4-Cyclohexa-2,5-dienyl Ligand (Benzene 1,4-Dianion):  Structures of [K([18]-crown-6)][Ln{η5-C5H3(SiMe3)2-1,3}2(C6H6)] [Cpâ€ĩ â€ĩ = η5-C5H3(SiMe3)2-1,3; Ln = La, Ce, Nd]. Organometallics, 1999, 18, 5539-5547.	2.3	70
67	Carbonâ€Nanotube–Polymer Nanocomposites for Fieldâ€Emission Cathodes. Small, 2009, 5, 826-831.	10.0	70
68	Mesoporous Silica Materials as Drug Delivery: "The Nightmare―of Bacterial Infection. Pharmaceutics, 2018, 10, 279.	4.5	70
69	Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. Journal of Materials Chemistry, 2007, 17, 2351.	6.7	69
70	Etching-Resistant Silver Nanoprisms by Epitaxial Deposition of a Protecting Layer of Gold at the Edges. Langmuir, 2009, 25, 10165-10173.	3.5	69
71	Magnetic-fluorescent nanocomposites for biomedical multitasking. Chemical Communications, 2006, , 4474.	4.1	68
72	Probing Cellâ€Typeâ€Specific Intracellular Nanoscale Barriers Using Sizeâ€Tuned Quantum Dots. Small, 2009, 5, 2581-2588.	10.0	68

#	Article	IF	CITATIONS
73	Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots. ACS Nano, 2017, 11, 9207-9214.	14.6	68
74	Effect of Chiral Ligand Concentration and Binding Mode on Chiroptical Activity of CdSe/CdS Quantum Dots. ACS Nano, 2019, 13, 13560-13572.	14.6	65
75	Nonclassical Organolanthanoid Metal Chemistry:  [K([18]-crown-6)(η2-PhMe)2]X (X = [(LnCpt3)2(μ-H)],) ⁻	[j ETQq1 2.3	1 0.784314 64
76	Dislocation-Induced Chirality of Semiconductor Nanocrystals. Nano Letters, 2015, 15, 1710-1715.	9.1	64
77	Synthesis of CaCO ₃ nano- and micro-particles by dry ice carbonation. Chemical Communications, 2017, 53, 6657-6660.	4.1	64
78	Aspects of non-classical organolanthanide chemistry. Journal of Organometallic Chemistry, 2002, 647, 71-83.	1.8	61
79	Unsolvated lanthanidocene hydrides and borohydrides. X-Ray crystal structure of [(η5-C5H3tBu2)2Ln(μ-H)]2 (Ln = Ce, Sm). Journal of Organometallic Chemistry, 1992, 424, 289-300.	1.8	60
80	Magnetic nanoparticle assemblies on denatured DNA show unusual magnetic relaxivity and potential applications for MRI. Chemical Communications, 2004, , 2560.	4.1	60
81	Precursor and Solvent Effects in the Nonhydrolytic Synthesis of Complex Oxide Nanoparticles for Bioimaging Applications by the Ether Elimination (Bradley) Reaction. Chemistry - A European Journal, 2009, 15, 6820-6826.	3.3	59
82	Magnetic Nanoparticles to Recover Cellular Organelles and Study the Time Resolved Nanoparticleâ€Cell Interactome throughout Uptake. Small, 2014, 10, 3307-3315.	10.0	59
83	Biomimetic Synthesis of Hierarchically Porous Nanostructured Metal Oxide Microparticles—Potential Scaffolds for Drug Delivery and Catalysis. Langmuir, 2010, 26, 9809-9817.	3.5	58
84	Completely Chiral Optical Force for Enantioseparation. Scientific Reports, 2016, 6, 36884.	3.3	57
85	Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. Scripta Materialia, 2008, 58, 69-72.	5.2	56
86	Enantioselective cellular uptake of chiral semiconductor nanocrystals. Nanotechnology, 2016, 27, 075102.	2.6	54
87	Crystal and molecular structures of bis(1,3-di-tert-butylcyclopentadienyl)cerium chloride and borohydride. First example of the bridging tetradentate BH4-group with two μ3-hydrogens: μ : η4-[(μ3-H)2B(μ2-H)2]. Journal of Organometallic Chemistry, 1991, 406, 343-352.	1.8	53
88	The First CeIV Metallasilsesquioxane Complex: [Ce{(c-C6H11)8Si8O13}2(py)3]. Angewandte Chemie - International Edition, 2001, 40, 1279-1281.	13.8	51
89	Two-Dimensional Förster Resonant Energy Transfer in a Mixed Quantum Dot Monolayer: Experiment and Theory. Journal of Physical Chemistry C, 2009, 113, 3084-3088.	3.1	51
90	Recent progress and future prospects in development of advanced materials for nanofiltration. Materials Today Communications, 2020, 23, 100888.	1.9	51

#	Article	IF	CITATIONS
91	Multimodal Magnetic-Plasmonic Nanoparticles for Biomedical Applications. Applied Sciences (Switzerland), 2018, 8, 97.	2.5	50
92	Recent Progress in Synthesis and Functionalization of Multimodal Fluorescent-Magnetic Nanoparticles for Biological Applications. Applied Sciences (Switzerland), 2018, 8, 172.	2.5	50
93	Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use. Journal of Nanobiotechnology, 2010, 8, 7.	9.1	49
94	Giant Optical Activity of Quantum Dots, Rods and Disks with Screw Dislocations. Scientific Reports, 2015, 5, 14712.	3.3	49
95	Graphene–ionic liquid electrolytes for dye sensitised solar cells. Journal of Materials Chemistry A, 2013, 1, 8379.	10.3	47
96	Synthesis Characterization and Photocatalytic Studies of Cobalt Ferrite-Silica-Titania Nanocomposites. Nanomaterials, 2014, 4, 331-343.	4.1	47
97	Synthesis and structures of lithium, aluminium, gallium and lanthanide amidinates containing a γ-pendant amine functionality. Dalton Transactions RSC, 2000, , 4093-4097.	2.3	46
98	Molecular Recognition of Biomolecules by Chiral CdSe Quantum Dots. Scientific Reports, 2016, 6, 24177.	3.3	46
99	Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells. Journal of Materials Chemistry A, 2018, 6, 2671-2680.	10.3	46
100	Magneto-Fluorescent Microbeads for Bacteria Detection Constructed from Superparamagnetic Fe ₃ O ₄ Nanoparticles and AIS/ZnS Quantum Dots. Analytical Chemistry, 2019, 91, 12661-12669.	6.5	46
101	Kevlar coated carbon nanotubes for reinforcement of polyvinylchloride. Journal of Materials Chemistry, 2008, 18, 5585.	6.7	45
102	Fully Metalated Silsesquioxanes: Building Blocks for the Construction of Catalyst Models. Angewandte Chemie - International Edition, 2004, 43, 4603-4606.	13.8	44
103	From Nanocrystals to Nanorods:  New Iron Oxideâ^'Silica Nanocomposites from Metallorganic Precursors. Journal of Physical Chemistry C, 2008, 112, 1008-1018.	3.1	44
104	The first metal complexes containing the 1,4-cyclohexa-2,5-dienyl ligand (benzene 1,4-dianion); synthesis and structures of [K(18-crown-6)][Ln{η5-C5H3(SiMe3)2-1,3}2(C6H6)](Ln = La, Ce). Chemical Communications, 1996, , 1987-1988.	4.1	43
105	Preparation of magnetic nanoparticles and their assemblies using a new Fe(II) alkoxide precursor. Journal of Materials Chemistry, 2001, 11, 2937-2939.	6.7	43
106	Solution-based "bottom-up―synthesis of group VI transition metal dichalcogenides and their applications. Materials Advances, 2021, 2, 146-164.	5.4	43
107	Hot plasmonic electrons for generation of enhanced photocurrent in gold-TiO2 nanocomposites. Nanoscale Research Letters, 2015, 10, 38.	5.7	42
108	Ligand-induced chirality and optical activity in semiconductor nanocrystals: theory and applications. Nanophotonics, 2020, 10, 797-824.	6.0	42

#	Article	IF	CITATIONS
109	A safe-by-design approach to the development of gold nanoboxes as carriers for internalization into cancer cells. Biomaterials, 2014, 35, 2543-2557.	11.4	41
110	Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated Î ² -cyclodextrin. Mikrochimica Acta, 2016, 183, 1579-1589.	5.0	40
111	Recent progress in chiral inorganic nanostructures. SPR Nanoscience, 2016, , 1-30.	0.6	40
112	Silsesquioxane Chemistry:Â Synthesis and Structure of the Novel Anionic Aluminosilsesquioxane [HNEt3][{Cy7Si7O9(OSiMe3)O2}2Al]·C6H14(Cy =c-C6H11). Inorganic Chemistry, 1999, 38, 210-211.	4.0	39
113	Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites. Nanotechnology, 2008, 19, 415707.	2.6	39
114	Effect of Metal Nanoparticle Concentration on Localized Surface Plasmon Mediated Förster Resonant Energy Transfer. Journal of Physical Chemistry C, 2012, 116, 26529-26534.	3.1	39
115	Carbon nanomaterial based counter electrodes for dye sensitized solar cells. Solar Energy, 2014, 102, 152-161.	6.1	39
116	Emission properties of colloidal quantum dots on polyelectrolyte multilayers. Nanotechnology, 2006, 17, 4117-4122.	2.6	38
117	Polymer Reinforcement with Kevlar-Coated Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 20184-20192.	3.1	38
118	Development of transparent, conducting composites by surface infiltration of nanotubes into commercial polymer films. Carbon, 2009, 47, 1983-1988.	10.3	37
119	High surface area ordered mesoporous nano-titania by a rapid surfactant-free approach. Journal of Materials Chemistry, 2012, 22, 20374.	6.7	37
120	Rare Earth Doped Silica Nanoparticles via Thermolysis of a Single Source Metallasilsesquioxane Precursor. Scientific Reports, 2017, 7, 45862.	3.3	36
121	Displacement of a cyclopentadienyl ligand by a crown ether from a lanthanocene(ii) [LnCp′′2]; crystal structures of the first cationic lanthanoid(ii) complexes, [SmCp′′([18]-crown-6)][SmCp′′3]Å·0.5C6H6 [YbCp′′([18]-crown-6)][Cp′′]Å·3C6H6 [Cp′′ = î·5-C5H3(SiMe3)2-1,3]. Chemical Communication	5 a nd ns, 1998, ₁	34 , 1843-1844.
122	Chemical modification of multi-walled carbon nanotubes using a tetrazine derivative. Chemical Physics Letters, 2007, 435, 84-89.	2.6	34
123	One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: The fuel effect. Journal of Solid State Chemistry, 2017, 253, 270-276.	2.9	33
124	One-Step Solution Combustion Synthesis of Cobalt Nanopowder in Air Atmosphere: The Fuel Effect. Inorganic Chemistry, 2018, 57, 1464-1473.	4.0	33
125	Organolanthanides in Materials Science. Comments on Inorganic Chemistry, 1997, 19, 153-184.	5.2	32
126	Comparative Flow Cytometric Analysis of Immunofunctionalized Nanowire and Nanoparticle Signatures. Small, 2010, 6, 247-255.	10.0	32

#	Article	IF	CITATIONS
127	Giant moment and magnetic anisotropy in Co-doped ZnO films grown by pulse-injection metal organic chemical vapor deposition. Applied Physics Letters, 2006, 89, 232503.	3.3	31
128	Synthesis, Characterisation, and Biological Studies of CdTe Quantum Dot–Naproxen Conjugates. ChemMedChem, 2007, 2, 183-186.	3.2	31
129	Chiral and Luminescent TiO ₂ Nanoparticles. Advanced Optical Materials, 2017, 5, 1601000.	7.3	31
130	A convenient route to anionic and cyclic aluminosiloxanes: crystal structures of [PyH][î€Al{OSiPh2(OSiPh2)2O}2] and the first twelve-membered organic aluminosilicate Al2Si4O6 ring. New Journal of Chemistry, 2001, 25, 528-530.	2.8	30
131	Poly(sodium-4-styrene)sulfonateâ^'Iron Oxide Nanocomposite Dispersions with Controlled Magnetic Resonance Properties. Journal of Physical Chemistry C, 2008, 112, 13324-13327.	3.1	30
132	Preparation and size optimisation of silica nanoparticles using statistical analyses. Chemical Physics Letters, 2009, 468, 239-244.	2.6	30
133	The crystal and molecular structure of the 20-electron alumohydride complex of bis(t-butylcyclopentadienyl)samarium {[(η5-C5H4But)2Sm(μ3-H)][(μ2-H)2AlH·OC4H8]}2. Journal of Organometallic Chemistry, 1990, 390, 153-158.	1.8	29
134	Comparison of three cell fixation methods for high content analysis assays utilizing quantum dots. Journal of Microscopy, 2008, 232, 91-98.	1.8	29
135	Chiral recognition of optically active CoFe ₂ O ₄ magnetic nanoparticles by CdSe/CdS quantum dots stabilised with chiral ligands. Journal of Materials Chemistry C, 2017, 5, 1692-1698.	5.5	29
136	Optical Activity of Chiral Nanoscrolls. Advanced Optical Materials, 2017, 5, 1600982.	7.3	29
137	Cadmium nanoparticles citrullinate cytokeratins within lung epithelial cells: cadmium as a potential cause of citrullination in chronic obstructive pulmonary disease. International Journal of COPD, 2018, Volume 13, 441-449.	2.3	29
138	Mixing of quantum states: A new route to creating optical activity. Scientific Reports, 2016, 6, 5.	3.3	28
139	Energy transfer in colloidal CdTe quantum dot nanoclusters. Optics Express, 2010, 18, 24486.	3.4	27
140	Photophysical studies of CdTe quantum dots in the presence of a zinc cationic porphyrin. Dalton Transactions, 2012, 41, 13159.	3.3	27
141	Excitation Energy Dependence of the Photoluminescence Quantum Yield of Core/Shell CdSe/CdS Quantum Dots and Correlation with Circular Dichroism. Chemistry of Materials, 2018, 30, 465-471.	6.7	27
142	Organolanthanide chemistry with bis(trimethylsilyl)methyl- and tert-butyldimethylsilyl-substituted cyclopentadienyl ligands Journal of Organometallic Chemistry, 1999, 582, 143-152.	1.8	26
143	Morphology of macro-pores formed by electrochemical etching of p-type Si. Journal of Micromechanics and Microengineering, 2004, 14, 1022-1028.	2.6	26
144	Förster resonant energy transfer in quantum dot layers. Superlattices and Microstructures, 2010, 47, 98-102.	3.1	26

#	Article	lF	CITATIONS
145	Folic acid modified gelatine coated quantum dots as potential reagents for in vitro cancer diagnostics. Journal of Nanobiotechnology, 2011, 9, 50.	9.1	26
146	Characterization protocol to improve the electroanalytical response of graphene–polymer nanocomposite sensors. Composites Science and Technology, 2016, 125, 71-79.	7.8	26
147	Amino-Functionalized Mesoporous Silica Nanoparticle-Encapsulated Octahedral Organoruthenium Complex as an Efficient Platform for Combatting Cancer. Inorganic Chemistry, 2020, 59, 10275-10284.	4.0	26
148	Dendrite-Like Self-Assembly of Magnetite Nanoparticles on Porous Silicon. Small, 2006, 2, 864-869.	10.0	25
149	Wash-free highly sensitive detection of C-reactive protein using gold derivatised triangular silver nanoplates. RSC Advances, 2014, 4, 29022-29031.	3.6	25
150	Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells. Chirality, 2017, 29, 403-408.	2.6	25
151	Bimodal magnetic-fluorescent nanostructures for biomedical applications. Journal of Materials Chemistry, 2009, 19, 4081.	6.7	24
152	Covalent crosslinking of single-walled carbon nanotubes with poly(allylamine) to produce mechanically robust composites. Journal of Materials Chemistry, 2010, 20, 7941.	6.7	24
153	Porphyrin-magnetite nanoconjugates for biological imaging. Journal of Nanobiotechnology, 2011, 9, 13.	9.1	24
154	Blood biocompatibility of surface-bound multi-walled carbon nanotubes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 39-46.	3.3	24
155	Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping. Nanophotonics, 2016, 5, 573-578.	6.0	24
156	Adaptable surfactant-mediated method for the preparation of anisotropic metal chalcogenide nanomaterials. Scientific Reports, 2018, 8, 2860.	3.3	24
157	Magnetite nanocrystals from a single source metallorganic precursor: metallorganic chemistry vs. biogeneric bacteria. Journal of Materials Chemistry, 2004, 14, 944-946.	6.7	23
158	Chiral quantum supercrystals with total dissymmetry of optical response. Scientific Reports, 2016, 6, 23321.	3.3	23
159	Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 1995. Coordination Chemistry Reviews, 1997, 165, 163-237.	18.8	22
160	Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells. Journal of Nanobiotechnology, 2012, 10, 4.	9.1	22
161	Title is missing!. Journal of Materials Science: Materials in Electronics, 2001, 12, 299-302.	2.2	21
162	Efficient Quenching of TGA-Capped CdTe Quantum Dot Emission by a Surface-Coordinated Europium(III) Cyclen Complex. Inorganic Chemistry, 2013, 52, 4133-4135.	4.0	21

#	Article	IF	CITATIONS
163	Advances in the Organometallic Chemistry of Carbon Nanomaterials. Organometallics, 2015, 34, 2086-2097.	2.3	20
164	First mixed valence cerium–organic trinuclear cluster [Ce3(OBut)10NO3] as a possible molecular switch: synthesis, structure and density functional calculations. Dalton Transactions RSC, 2002, , 1852-1856.	2.3	19
165	NMR Relaxation of Water in Nanostructures: Analysis of Ferromagnetic Cobalt-Ferrite Polyelectrolyte Nanocomposites. ChemPhysChem, 2011, 12, 772-776.	2.1	19
166	Development of Graphene Nano-Platelet Based Counter Electrodes for Solar Cells. Materials, 2015, 8, 5953-5973.	2.9	19
167	Synthesis of functionalised polyethylene glycol derivatives of naproxen for biomedical applications. Tetrahedron, 2008, 64, 10132-10139.	1.9	18
168	Strong Enhancement of Circular Dichroism in a Hybrid Material Consisting of J-Aggregates and Silver Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 13708-13712.	3.1	18
169	Nanoparticles in Bioimaging. Nanomaterials, 2016, 6, 105.	4.1	18
170	Preparation from a revisited wet chemical route of phase-pure, monocrystalline and SHC-efficient BiFeO3 nanoparticles for harmonic bio-imaging. Scientific Reports, 2018, 8, 10473.	3.3	18
171	Towards white luminophores: developing luminescent silica on the nanoscale. Journal of Materials Chemistry, 2012, 22, 7358.	6.7	17
172	The optimisation of dye sensitised solar cell working electrodes for graphene and SWCNTs containing quasi-solid state electrolytes. Solar Energy, 2014, 110, 239-246.	6.1	17
173	Strong Enhancement of PbS Quantum Dot NIR Emission Using Plasmonic Semiconductor Nanocrystals in Nanoporous Silicate Matrix. Advanced Optical Materials, 2018, 6, 1701055.	7.3	17
174	An investigation of co-fired varistor-ferrite materials. Journal of the European Ceramic Society, 2004, 24, 2005-2013.	5.7	16
175	Investigation of Complexes of CdTe Quantum Dots with the AlOH-Sulphophthalocyanine Molecules in Aqueous Media. Journal of Physical Chemistry C, 2013, 117, 23425-23431.	3.1	16
176	High-Performance Boron Nitride-Based Membranes for Water Purification. Nanomaterials, 2022, 12, 473.	4.1	16
177	Anisotropic calcium phosphate nanoparticles coated with 2-carboxyethylphosphonic acid. Journal of Materials Chemistry, 2006, 16, 3964.	6.7	15
178	The Fabrication, Fluorescence Dynamics, and Whispering Gallery Modes of Aluminosilicate Microtube Resonators. Advanced Functional Materials, 2007, 17, 1106-1114.	14.9	15
179	Preparation of Buckypaper–Copper Composites and Investigation of their Conductivity and Mechanical Properties. ChemPhysChem, 2009, 10, 774-777.	2.1	15
180	Picosecond to Millisecond Transient Absorption Spectroscopy of Broad-Band Emitting Chiral CdSe Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 16226-16232.	3.1	15

#	Article	IF	CITATIONS
181	Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip. Scientific Reports, 2017, 7, 42120.	3.3	15
182	Investigation of AgInS2/ZnS Quantum Dots by Magnetic Circular Dichroism Spectroscopy. Materials, 2019, 12, 3616.	2.9	15
183	FRET-Based Analysis of AgInS2/ZnAgInS/ZnS Quantum Dot Recombination Dynamics. Nanomaterials, 2020, 10, 2455.	4.1	15
184	Fabrication and characterization of multimodal magnetic - fluorescent polystyrene nanowires as selective cell imaging probes. Journal of Materials Chemistry, 2011, 21, 14219.	6.7	14
185	Magnetic and Optical Properties of Isolated and Aggregated CoFe ₂ O ₄ Superparamagnetic Nanoparticles Studied by MCD Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 11491-11497.	3.1	14
186	Optically Active Semiconductor Nanosprings for Tunable Chiral Nanophotonics. ACS Nano, 2018, 12, 6203-6209.	14.6	14
187	Characterising and control of ammonia emission in microbial fuel cells. Chemical Engineering Journal, 2020, 389, 124462.	12.7	14
188	Coordinationally oversaturated metallocene derivatives. The crystal and molecular structure of [(η5-C5H5)2Sm(μ3-H)]2[(μ2-H)2AlH · N(C2H5)3]2 and [(Ĩ·5-C5H4tBu)2Sm]2-(μ2-H)μ-[(μ3-H)2Al(μ2-I complexes. Journal of Organometallic Chemistry, 1991, 419, 299-310.	H)21Â8 Me2	2NQ3H4NMe2
189	Crystal and molecular structures of the octanuclear aluminohydride samarium complex (η5-C5H3tBu2)Sm[(η2-H)2(η3-H)2Al(Me2NC2H4NMe2)]2 [(η5-C5H3tBu2)SmH]2[(η2-H)3Al(η2-H)Al(η2-H)3] [(η3-H)2Sm(η5-C5H3tBu2)2]. Journal of Organometallic Chemistry, 1991, 420, 43-52.	1.8	13
190	Intraband optical activity of semiconductor nanocrystals. Chirality, 2017, 29, 159-166.	2.6	13
191	Cyclopentadienyl-functionalised polyhedral silsesquioxanes as building blocks for new nanostructured materials. Journal of Organometallic Chemistry, 2005, 690, 463-468.	1.8	12
192	Circular Dichroism of Electric-Field-Oriented CdSe/CdS Quantum Dots-in-Rods. ACS Nano, 2016, 10, 8904-8909.	14.6	12
193	A highly luminescent porous metamaterial based on a mixture of gold and alloyed semiconductor nanoparticles. Journal of Materials Chemistry C, 2018, 6, 5278-5285.	5.5	12
194	Chemical modification of silicon surfaces with ferrocene functionalities. Physica Status Solidi A, 2003, 197, 492-496.	1.7	11
195	Preparation and properties of buckypaper–gold nanoparticle composites. Journal of Materials Chemistry, 2010, 20, 2949.	6.7	11
196	NMR studies into colloidal stability and magnetic order in fatty acid stabilised aqueous magnetic fluids. Physical Chemistry Chemical Physics, 2010, 12, 14009.	2.8	11
197	(S)-Proline-Derived Catalysts for the Acylative Kinetic Resolution of Alcohols: A Remote Structural Change Allows a Complete Selectivity Switch. Synlett, 2013, 24, 1728-1734.	1.8	11
198	Harnessing the Shape-Induced Optical Anisotropy of a Semiconductor Nanocrystal: A New Type of Intraband Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 2867-2876.	3.1	11

#	Article	IF	CITATIONS
199	Heparin conjugated quantum dots for in vitro imaging applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1853-1861.	3.3	11
200	Photoluminescence of a quantum-dot molecule. Journal of Applied Physics, 2015, 117, 014306.	2.5	11
201	Electrophoretic Deposition of Quantum Dots and Characterisation of Composites. Materials, 2019, 12, 4089.	2.9	11
202	Doped vanadium oxides phase transitions vapors influence. Sensors and Actuators B: Chemical, 2005, 108, 113-118.	7.8	10
203	Chiral CdTe Quantum Dots. Materials Research Society Symposia Proceedings, 2009, 1241, 1.	0.1	9
204	Preparation and Investigation of Quantum-Dot-Loaded Hollow Polymer Microspheres. Journal of Physical Chemistry C, 2013, 117, 24527-24536.	3.1	9
205	Water-based ultrasonic synthesis of SbSI nanoneedles. Materials Letters, 2015, 160, 113-116.	2.6	9
206	Electrophoretic separation and deposition of metal–graphene nanocomposites and their application as electrodes in solar cells. RSC Advances, 2016, 6, 64097-64109.	3.6	9
207	Synthesis of centimeter-size free-standing perovskite nanosheets from single-crystal lead bromide for optoelectronic devices. Scientific Reports, 2019, 9, 11738.	3.3	9
208	Photochemically Induced Circular Dichroism of Semiconductor Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 19979-19983.	3.1	9
209	Near-infrared-emitting CIZSe/CIZS/ZnS colloidal heteronanonail structures. Nanoscale, 2020, 12, 15295-15303.	5.6	9
210	One Dimensional AuAg Nanostructures as Anodic Catalysts in the Ethylene Glycol Oxidation. Nanomaterials, 2020, 10, 719.	4.1	9
211	Anisotropic nanomaterials for asymmetric synthesis. Nanoscale, 2021, 13, 20354-20373.	5.6	9
212	Kinetically stable adduct of samarocene with aluminium deuteride (η·C5H3tBu2)2Sm(μ2-D)2AID·Me2NC2H4NMe2. Journal of Organometallic Chemistry, 1992, 440, 47-52.	1.8	8
213	Confined optical modes and amplified spontaneous emission from a microtube cavity formed by vacuum assisted filtration. Applied Physics Letters, 2006, 89, 143113.	3.3	8
214	An investigation of co-fired varistor-NiZn ferrite multilayers. Materials Research Bulletin, 2009, 44, 747-752.	5.2	8
215	Optically active II-VI semiconductor nanocrystals via chiral phase transfer. Materials Research Society Symposia Proceedings, 2015, 1793, 27-33.	0.1	8
216	Influence of CdSe and CdSe/CdS nanocrystals on the optical activity of chiral organic molecules. Journal of Materials Chemistry C, 2018, 6, 1759-1766.	5.5	8

#	Article	IF	CITATIONS
217	Tunable synthesis of ultrathin AuAg nanowires and their catalytic applications. Nanoscale, 2019, 11, 4328-4336.	5.6	8
218	Real-world natural passivation phenomena can limit microplastic generation in water. Chemical Engineering Journal, 2022, 428, 132466.	12.7	8
219	Cerium oxide nanoparticles anchored onto graphene oxide for the removal of heavy metal ions dissolved in water. , 0, 124, 134-145.		8
220	Optimization of Zn–Mn ferrite nanoparticles for low frequency hyperthermia: Exploiting the potential of superquadratic field dependence of magnetothermal response. Applied Physics Letters, 2022, 120, 102403.	3.3	8
221	New pyridine adducts of organosilanols. Inorganic Chemistry Communication, 2004, 7, 341-343.	3.9	7
222	Structural and magnetic properties of Co-doped ZnO films grown by pulse-injection MOCVD. Journal of Magnetism and Magnetic Materials, 2007, 316, e203-e206.	2.3	7
223	Anomalous magnetic field effects during pulsed injection metal-organic chemical vapor deposition of magnetite films. Applied Physics Letters, 2010, 96, .	3.3	7
224	The Expeimental Setup for Measuring of Thermal Parameters of Magnetic Fluids in AC Magnetic Field. Solid State Phenomena, 2014, 215, 454-458.	0.3	7
225	Investigation of biocompatible complexes of Mn^2+-doped ZnS quantum dots with chlorin e6. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2014, 81, 444.	0.4	7
226	The effect of "Jelly―CdTe QD uptake on RAW264.7 monocytes: immune responses and cell fate study. Toxicology Research, 2016, 5, 180-187.	2.1	7
227	Circular Dichroism Spectroscopy as a Powerful Tool for Unraveling Assembly of Chiral Nonluminescent Aggregates of Photosensitizer Molecules on Nanoparticle Surfaces. Journal of Physical Chemistry A, 2019, 123, 8028-8035.	2.5	7
228	Photoinduced Charge Transfer in Hybrid Structures Based on Titanium Dioxide NPs with Multicomponent QD Exciton Luminescence Decay. Journal of Physical Chemistry C, 2019, 123, 14790-14796.	3.1	7
229	Silsesquioxanchemie II. Zinn(IV)- und Hafnium(IV)-Verbindungen von Silsesquioxanen. Monatshefte Für Chemie, 1999, 130, 45.	1.8	7
230	Investigation of alumina–silica films deposited by pulsed injection metal–organic chemical vapour deposition. Thin Solid Films, 2006, 515, 1830-1834.	1.8	6
231	Investigation of tetrazine functionalised single walled carbon nanotubes. Plastics, Rubber and Composites, 2009, 38, 253-256.	2.0	6
232	Oligonucleotide Functionalization of Hollow Triangular Gold Silver Alloy Nanoboxes. Journal of Physical Chemistry C, 2013, 117, 669-676.	3.1	6
233	Influence of intermolecular interactions on spectroscopic characteristics of metal nanoparticles and their composites. Physical Chemistry Chemical Physics, 2014, 16, 24536-24548.	2.8	6
234	An experimental and theoretical assessment of quantum dot cytotoxicity. Toxicology Research, 2015, 4, 1409-1415.	2.1	6

#	Article	IF	CITATIONS
235	Magnetically activated adhesives: towards on-demand magnetic triggering of selected polymerisation reactions. Chemical Science, 2017, 8, 7758-7764.	7.4	6
236	Macroscopic Vortex-Induced Optical Activity in Silver Nanowires. Journal of Physical Chemistry C, 2019, 123, 15307-15313.	3.1	6
237	Stretchable optical device with electrically tunable absorbance and fluorescence. Smart Materials and Structures, 2014, 23, 015009.	3.5	5
238	The interaction of QDs with RAW264.7 cells: nanoparticle quantification, uptake kinetics and immune responses study. RSC Advances, 2015, 5, 42250-42258.	3.6	5
239	In one harness: the interplay of cellular responses and subsequent cell fate after quantum dot uptake. Nanomedicine, 2016, 11, 2603-2615.	3.3	5
240	Searching for the nano effect in Cu-HCF (II) particles to improve Cs sorption efficiency: Highlighting the use of intrinsic magnetism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123758.	4.7	5
241	Luminescent calcium carbonate micro â€~bow ties'. Materials Today Communications, 2019, 20, 100590.	1.9	5
242	Ligand-Assisted Formation of Graphene/Quantum Dot Monolayers with Improved Morphological and Electrical Properties. Nanomaterials, 2020, 10, 723.	4.1	5
243	Sampling, Identification and Characterization of Microplastics Release from Polypropylene Baby Feeding Bottle during Daily Use. Journal of Visualized Experiments, 2021, , .	0.3	5
244	Bactericidal Activity of Multilayered Hybrid Structures Comprising Titania Nanoparticles and CdSe Quantum Dots under Visible Light. Nanomaterials, 2021, 11, 3331.	4.1	5
245	Porous silicon - rare earth doped xerogel and glass composites. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1693-1697.	1.8	4
246	Magnetic nanoparticles - porous silicon composite material. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1698-1702.	1.8	4
247	Whispering gallery mode emission from microtube cavity. Optics and Spectroscopy (English) Tj ETQq1 1 0.7843	14 rgBT /0 0.6	Overlock 10
248	Functionalisation of silicon surfaces using tetrazine functionalities. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1740-1744.	0.8	4
249	Optical Properties andIn VitroBiological Studies of Oligonucleotide-Modified Quantum Dots. Journal of Nanomaterials, 2013, 2013, 1-10.	2.7	4
250	3D superstructures with an orthorhombic lattice assembled by colloidal PbS quantum dots. Nanoscale, 2018, 10, 8313-8319.	5.6	4
251	Polyelectrolyte-Stabilised Magnetic-Plasmonic Nanocomposites. Nanomaterials, 2018, 8, 1044.	4.1	4
252	Investigation of Quantum Dot–Metal Halide Interactions and Their Effects on Optical Properties. Journal of Physical Chemistry C, 2018, 122, 25075-25084.	3.1	4

#	Article	IF	CITATIONS
253	Water-Soluble Conjugates of ZnS:Mn Quantum Dots with Chlorin e6 for Photodynamic Therapy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 94-98.	0.6	4
254	Large energy transfer distance to a plane of gold nanoparticles. , 2012, , .		3
255	Synthesis of Biocompatible Gelatinated Thioglycolic Acid-Capped CdTe Quantum Dots ("Jelly Dotsâ€) . Methods in Molecular Biology, 2012, 906, 275-281.	0.9	3
256	Optical activity of helical quantum-dot supercrystals. Optics and Spectroscopy (English Translation) Tj ETQq0 0 0	rgBT /Ov	verlgck 10 Tf 5
257	Synthesis and Magnetic Properties of Lâ€Alanine Capped CoFe ₂ O ₄ Nanoparticles. ChemistrySelect, 2018, 3, 4726-4729.	1.5	3
258	Investigation of Magnetic Circular Dichroism Spectra of Semiconductor Quantum Rods and Quantum Dot-in-Rods. Nanomaterials, 2020, 10, 1059.	4.1	3
259	Photoluminescent, "ice-cream cone―like Cu–In–(Zn)–S/ZnS nanoheterostructures. Scientific Reports, 2022, 12, 5787.	3.3	3
260	Chiroptically Active 1D Ultrathin AuAg Nanostructures. Journal of Physical Chemistry C, 2022, 126, 434-443.	3.1	3
261	Spectroscopic characterization of chemically modified porous silicon. , 2003, 4876, 788.		2
262	Highly efficient Forster resonance energy transfer between CdTe nanocrystals and two different dye molecules. , 2004, , .		2
263	Enhanced F rster resonance energy transfer between the CdTe quantum dots in proximity to gold nanoparticles. , 2007, , .		2
264	Chapter 4. Chemical Functionalisation of Carbon Nanotubes for Polymer Reinforcement. RSC Nanoscience and Nanotechnology, 2013, , 72-119.	0.2	2
265	Transient intraband absorption of light by semiconductor nanorods. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2013, 80, 648.	0.4	2
266	Magnetic Nanomaterials and Their Applications. Nanomaterials, 2014, 4, 505-507.	4.1	2
267	Photoinduced processes in hybrid structures on the basis of Đ¢Ñ–O2 nanoparticles and CdSe/ZnS quantum dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 106-109.	0.6	2
268	Optical activity of semiconductor nanocrystals with ionic impurities. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 64-68.	0.6	2
269	Deposition of Magnetite Nanofilms by Pulsed Injection MOCVD in a Magnetic Field. Nanomaterials, 2018, 8, 1064.	4.1	2
	Photocatalytic Properties of Hybrid Nanostructures Based on Nanoparticles of TiO2 and		

Semiconductor Quantum Dots. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 57 Td (S

#	Article	IF	CITATIONS
271	Porous flower-like superstructures based on self-assembled colloidal quantum dots for sensing. Scientific Reports, 2019, 9, 617.	3.3	2
272	Pt and RhPt dendritic nanowires and their potential application as anodic catalysts for fuel cells. RSC Advances, 2019, 9, 31169-31176.	3.6	2
273	Photocatalytic properties of hybrid structures based on Titania nanoparticles and semiconductor quantum dots. Optical and Quantum Electronics, 2020, 52, 1.	3.3	2
274	Lab-on-Microsphere—FRET-Based Multiplex Sensor Platform. Nanomaterials, 2021, 11, 109.	4.1	2
275	Enantioselective effect of cysteine functionalized mesoporous silica nanoparticles in U87 MG and GM08680 human cells and <i>Staphylococcus aureus</i> bacteria. Journal of Materials Chemistry B, 2021, 9, 3544-3553.	5.8	2
276	An Investigation of Open, Interconnected Porosity in 3D-printed Alumina. Ceramics in Modern Technologies, 2019, 1, 145-151.	0.3	2
277	Coordination-unsaturated complexes of tris(cyclopentadienyl)samarium: Solvate (?5-C5H5)3Sm�OC4H8	1.5	1
278	Preparation and biological investigation of luminescent water soluble CdTe nanoparticles. , 2005, 5824, 129.		1
279	New two in one magnetic fluorescent nanocomposites. , 2005, , .		1
280	Spontaneous emission enhancement in a microtube cavity with highly confined optical modes. , 2007, , .		1
281	Influence of intra-ensemble energy transfer on the properties of nanocrystal quantum dot structures and devices. , 2010, , .		1
282	New quantum dot sensors. Proceedings of SPIE, 2010, , .	0.8	1
283	FRET in self-assembled CdTe quantum dot nanoclusters. , 2010, , .		1
284	Enhanced quantum efficiency in mixed donor-acceptor nanocrystal quantum dot monolayers. , 2011, , .		1
285	Chapter 1. Gold and silver nanostructures of controlled shape. SPR Nanoscience, 2013, , 1-22.	0.6	1
286	Chiral quantum dot based materials. Proceedings of SPIE, 2014, , .	0.8	1
287	Chiral Nanostructures with Plasmon and Exciton Resonances. , 2014, , 1-55.		1
288	Enhancing FÃ ${ m q}$ rster nonradiative energy transfer via plasmon interaction. , 2016, , .		1

#	Article	IF	CITATIONS
289	Aggregation of quantum dots in hybrid structures based on TiO ₂ nanoparticles. Proceedings of SPIE, 2016, , .	0.8	1
290	Complexes of photosensitizer and CdSe/ZnS quantum dots passivated with BSA: optical properties and intracomplex energy transfer. , 2016, , .		1
291	Photophysics of Titania Nanoparticle/Quantum Dot Hybrid Structures. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 1256-1261.	0.6	1
292	Controlled synthesis of luminescent CIZS/ZnS/ZnS core/shell/shell nanoheterostructures. CrystEngComm, 0, , .	2.6	1
293	Photoinduced increase of electron transfer efficiency of QDs based hybrid structures. , 2019, , .		1
294	Fast and scalable synthesis of lead halide perovskite nanowires for tunable room-temperature nanolasers. , 2016, , .		1
295	Silsesquioxane Chemistry II. Tin(IV) and Hafnium(IV) Compounds of Silsesquioxanes. Monatshefte Für Chemie, 1999, 130, 45-54.	1.8	0
296	Investigations on europium doped alumino-silicate xerogel incorporated in micro-channel glass and porous silicon. , 2005, , .		0
297	Synthesis and photochemical studies of Cu(I) complex with 1,4-bis(3,5-dimethylpyrazol-1yl)tetrazine ligand. , 2005, , .		0
298	Whispering Gallery Mode Emission from Photonic Microtubes. , 2006, , .		0
299	Amplified spontaneous emission from a microtube cavity with whispering gallery modes. , 2007, , .		0
300	Investigation on patterned structures formed on p-type silicon and its morphological dependence on current density. Materials Science and Technology, 2007, 23, 471-474.	1.6	0
301	Highly emissive CdTe nanowires grown in a phosphate buffer solution. , 2007, , .		0
302	New optical cylindrical microresonators. Proceedings of SPIE, 2007, , .	0.8	0
303	Amplified spontaneous emission from a microtube cavity with whispering gallery modes. Proceedings of SPIE, 2007, , .	0.8	0
304	Highly emissive CdTe nanowires grown in a phosphate buffer solution: FLIM imaging and spectroscopic studies. Proceedings of SPIE, 2007, , .	0.8	0
305	Confined modes in photonic microtube structures. , 2007, , .		0

 $_{\rm 306}$ $\,$ $\,$ Fabrication and characterisation of photonic nanowires. , 2008, , .

0

IF # ARTICLE CITATIONS Key Role of Aspect Ratio in Optimising Local Surface Plasmon Sensitivities of Solution Phase 0.1 Triangular Silver Nanoplates. Materials Research Society Symposia Proceedings, 2009, 1208, 1. Förster resonant energy transfer in quantum dot structures., 2009,,. 308 0 Influence of localised surface plasmons on energy transfer between quantum dots., 2010,,. Features of the interaction of quantum dots in CdSe and CdTe systems. Journal of Optical Technology 310 0.4 0 (A Translation of Opticheskii Zhurnal), 2011, 78, 149. Modification of the FRET rate in quantum dot structures., 2011, , . 311 Evaluating the Potential of Quantum Dots for In Vitro Biological Studies: Effects on Gene Expression 312 0 Using Microarray Analysis. , 2012, 906, 171-183. Quantum Dot Synthesis Methods., 2013, , 1-42. Enhanced chiroptical properties of a hybrid material consisting of J-aggregates and silver 314 0 nanoparticles. , 2014, , . Optical properties of hollow polymer microspheres loaded with semiconductor quantum dots., 2014, Phonon-induced photoluminescence from a single quantum dot in the regime vibrational resonance. 316 0 2014, , Transient pump-probe absorption spectroscopy of semiconductor nanodumbbells., 2014, , . 318 Optically active quantum dots. Proceedings of SPIE, 2015, , . 0.8 0 Investigations into the electrochemical etching process of p-type silicon using ethanol-surfactant 0.4 solutions. AIP Conference Proceedings, 2017, , Preparation and Characterisation of Metallorganic Precursors Derived Iron Oxides on Porous 320 0.3 0 Silicon Layers. Materials Science Forum, 0, 995, 63-68. APPLICATION OF NANOMATERIALS IN NANOMEDICINE RESEARCH., 2011, , . 321 Synthesis of Millimeter-Size Freestanding Perovskite Nanofilms from Single-Crystal Lead Bromide for 322 0 Óptoelectronic Devices., 2017,,. Magnetic nanoparticles and nanoobjects used for medical applications., 2022, , 59-105.