Zhenglin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4680513/publications.pdf

Version: 2024-02-01

94 papers 4,897 citations

172207 29 h-index 65 g-index

102 all docs

 $\begin{array}{c} 102 \\ \\ \text{docs citations} \end{array}$

102 times ranked 9548 citing authors

#	Article	IF	CITATIONS
1	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	9.4	1,167
2	A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, 586, 572-577.	13.7	630
3	Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nature Medicine, 2020, 26, 1193-1195.	15.2	352
4	Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. International Journal of Infectious Diseases, 2020, 93, 264-267.	1.5	284
5	Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nature Genetics, 2014, 46, 1115-1119.	9.4	160
6	New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nature Communications, 2015, 6, 6063.	5.8	147
7	Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nature Genetics, 2017, 49, 993-1004.	9.4	114
8	Genetic Variants at 13q12.12 Are Associated with High Myopia in the Han Chinese Population. American Journal of Human Genetics, 2011, 88, 805-813.	2.6	106
9	A common variant near TGFBR3 is associated with primary open angle glaucoma. Human Molecular Genetics, 2015, 24, 3880-3892.	1.4	105
10	Genetic and Functional Dissection of HTRA1 and LOC387715 in Age-Related Macular Degeneration. PLoS Genetics, 2010, 6, e1000836.	1.5	101
11	A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nature Genetics, 2015, 47, 387-392.	9.4	97
12	Genome-wide association analysis of Vogt-Koyanagi-Harada syndrome identifies two new susceptibility loci at 1p31.2 and 10q21.3. Nature Genetics, 2014, 46, 1007-1011.	9.4	88
13	A Recurrent Missense Mutation in ZP3 Causes Empty Follicle Syndrome and Female Infertility. American Journal of Human Genetics, 2017, 101, 459-465.	2.6	87
14	Detection of serum IgM and IgG for COVID-19 diagnosis. Science China Life Sciences, 2020, 63, 777-780.	2.3	78
15	A genome-wide meta-analysis identifies two novel loci associated with high myopia in the Han Chinese population. Human Molecular Genetics, 2013, 22, 2325-2333.	1.4	71
16	Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nature Communications, 2015, 6, 6689.	5.8	70
17	Genetic factors define CPO and CLO subtypes of nonsyndromicorofacial cleft. PLoS Genetics, 2019, 15, e1008357.	1.5	70
18	Dynamic blood single-cell immune responses in patients with COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 110.	7.1	69

#	Article	IF	Citations
19	A missense variant in FGD6 confers increased risk of polypoidal choroidal vasculopathy. Nature Genetics, 2016, 48, 640-647.	9.4	68
20	Mistrafficking of prenylated proteins causes retinitis pigmentosa 2. FASEB Journal, 2015, 29, 932-942.	0.2	58
21	Scleral HIF- $1\hat{l}\pm$ is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine, 2020, 57, 102878.	2.7	56
22	Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Molecular Therapy, 2022, 30, 2342-2353.	3.7	56
23	Genetic variants in the <i>HLA–DRB1</i> gene are associated with Kashinâ€Beck disease in the Tibetan population. Arthritis and Rheumatism, 2011, 63, 3408-3416.	6.7	39
24	Catenin $\hat{l}\pm 1$ mutations cause familial exudative vitreoretinopathy by overactivating Norrin/ \hat{l}^2 -catenin signaling. Journal of Clinical Investigation, 2021, 131, .	3.9	37
25	Mutation screening in genes known to be responsible for Retinitis Pigmentosa in 98 Small Han Chinese Families. Scientific Reports, 2017, 7, 1948.	1.6	34
26	Exome sequencing revealed Notch ligand JAG1 as a novel candidate gene for familial exudative vitreoretinopathy. Genetics in Medicine, 2020, 22, 77-84.	1.1	34
27	A Mussel-Inspired Facile Method to Prepare Multilayer-AgNP-Loaded Contact Lens for Early Treatment of Bacterial and Fungal Keratitis. ACS Biomaterials Science and Engineering, 2018, 4, 1568-1579.	2.6	32
28	HTRA1 variant increases risk to neovascular age-related macular degeneration in Chinese population. Vision Research, 2007, 47, 3120-3123.	0.7	31
29	Aberrant TGF- \hat{l}^21 signaling activation by MAF underlies pathological lens growth in high myopia. Nature Communications, 2021, 12, 2102.	5.8	31
30	A splicing mutation in aryl hydrocarbon receptor associated with retinitis pigmentosa. Human Molecular Genetics, 2018, 27, 2563-2572.	1.4	29
31	Genetic Variants in PVRL2-TOMM40-APOE Region Are Associated with Human Longevity in a Han Chinese Population. PLoS ONE, 2014, 9, e99580.	1.1	29
32	Association Study of Polymorphisms in Selenoprotein Genes and Kashin–Beck Disease and Serum Selenium/Iodine Concentration in a Tibetan Population. PLoS ONE, 2013, 8, e71411.	1.1	24
33	Genome-wide analysis identified 17 new loci influencing intraocular pressure in Chinese population. Science China Life Sciences, 2019, 62, 153-164.	2.3	24
34	Brain variability in dynamic resting-state networks identified by fuzzy entropy: a scalp EEG study. Journal of Neural Engineering, 2021, 18, 046097.	1.8	23
35	Variants in the Wnt co-receptor LRP6 are associated with familial exudative vitreoretinopathy. Journal of Genetics and Genomics, 2022, 49, 590-594.	1.7	18
36	Exome Sequencing Analysis Identifies Compound Heterozygous Mutation in ABCA4 in a Chinese Family with Stargardt Disease. PLoS ONE, 2014, 9, e91962.	1.1	17

#	Article	IF	CITATIONS
37	Mutation spectrum of $\langle i \rangle$ CYP1B1 $\langle j \rangle$ in Chinese patients with primary open-angle glaucoma. British Journal of Ophthalmology, 2015, 99, 425-430.	2.1	17
38	Whole-Exome Sequencing Identified <i>DLG1</i> as a Candidate Gene for Familial Exudative Vitreoretinopathy. Genetic Testing and Molecular Biomarkers, 2021, 25, 309-316.	0.3	17
39	A genetic variant in IL-6 lowering its expression is protective for critical patients with COVID-19. Signal Transduction and Targeted Therapy, 2022, 7, 112.	7.1	17
40	Mutant RAMP2 causes primary open-angle glaucoma via the CRLR-cAMP axis. Genetics in Medicine, 2019, 21, 2345-2354.	1.1	16
41	The ER membrane protein complex subunit Emc3 controls angiogenesis via the FZD4/WNT signaling axis. Science China Life Sciences, 2021, 64, 1868-1883.	2.3	16
42	Novel mutations in the TSPAN12 gene in Chinese patients with familial exudative vitreoretinopathy. Molecular Vision, 2014, 20, 1296-306.	1.1	16
43	Altered intrinsic brain activity in patients with familial cortical myoclonic tremor and epilepsy: An amplitude of low-frequency fluctuation study. Journal of the Neurological Sciences, 2015, 351, 133-139.	0.3	15
44	Evaluation of the Association Between Common Genetic Variants Near the <i> ABCA1 < /i > Gene and Primary Angle Closure Glaucoma in a Han Chinese Population., 2015, 56, 6248.</i>		14
45	Autologous Fat Graft for the Treatment of Sighted Posttraumatic Enophthalmos and Sunken Upper Eyelid. Ophthalmic Plastic and Reconstructive Surgery, 2018, 34, 381-386.	0.4	14
46	Whole-exome sequencing revealed HKDC1 as a candidate gene associated with autosomal-recessive retinitis pigmentosa. Human Molecular Genetics, 2018, 27, 4157-4168.	1.4	14
47	Mutation screening of the USH2A gene in retinitis pigmentosa and USHER patients in a Han Chinese population. Eye, 2018, 32, 1608-1614.	1.1	14
48	Modifying strategies for SDF-1/CXCR4 interaction during mesenchymal stem cell transplantation. General Thoracic and Cardiovascular Surgery, 2022, 70, 1-10.	0.4	14
49	Whole-exome sequencing reveals a novel frameshift mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in the Indian population. Journal of Human Genetics, 2015, 60, 625-630.	1.1	12
50	A Novel PRPF31 Mutation in a Large Chinese Family with Autosomal Dominant Retinitis Pigmentosa and Macular Degeneration. PLoS ONE, 2013, 8, e78274.	1.1	11
51	Update on the application of optic nerve sheath fenestration. Restorative Neurology and Neuroscience, 2017, 35, 275-286.	0.4	11
52	A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis. BMC Medical Genetics, 2019, 20, 111.	2.1	11
53	Dysfunction of VIPR2 leads to myopia in humans and mice. Journal of Medical Genetics, 2022, 59, 88-100.	1.5	10
54	Identification of potential candidate genes and pathways in atrioventricular nodal reentry tachycardia by wholeâ€exome sequencing. Clinical and Translational Medicine, 2020, 10, 238-257.	1.7	10

#	Article	IF	CITATIONS
55	Whole-exome sequencing identifies a novel homozygous frameshift mutation in the PROM1 gene as a causative mutation in two patients with sporadic retinitis pigmentosa. International Journal of Molecular Medicine, 2016, 37, 1528-1534.	1.8	9
56	Identification of a novel MYOC mutation in a Chinese family with primary open-angle glaucoma. Gene, 2015, 571, 188-193.	1.0	8
57	Association of $\langle i \rangle IGF1 \langle i \rangle$ and $\langle i \rangle IGF1R \langle i \rangle$ gene polymorphisms with high myopia in a Han Chinese population. Ophthalmic Genetics, 2017, 38, 122-126.	0.5	8
58	Association study of candidate genes for susceptibility to Kashin-Beck disease in a Tibetan population. BMC Medical Genetics, 2017, 18, 69.	2.1	8
59	Association of <i>catalase</i> polymorphisms with primary open-angle glaucoma in a Chinese population. Ophthalmic Genetics, 2018, 39, 35-40.	0.5	8
60	A Case of Hyaluronic Acid Induced Blindness With Ophthalmoplegia and Ptosis. Ophthalmic Plastic and Reconstructive Surgery, 2018, 34, e184-e186.	0.4	8
61	Sin1 promotes proliferation and invasion of prostate cancer cells by modulating mTORC2-AKT and AR signaling cascades. Life Sciences, 2020, 248, 117449.	2.0	8
62	Evaluation of Four Genetic Variants in Han Chinese Subjects with High Myopia. Journal of Ophthalmology, 2015, 2015, 1-6.	0.6	7
63	Associations of 6p21.3 Region with Age-related Macular Degeneration and Polypoidal Choroidal Vasculopathy. Scientific Reports, 2016, 6, 20914.	1.6	7
64	CD146 as a promising therapeutic target for retinal and choroidal neovascularization diseases. Science China Life Sciences, 2022, 65, 1157-1170.	2.3	7
65	A novel mutation in LMX1B gene causes nail-patella syndrome in a large Chinese family. Bone, 2008, 43, 591-595.	1.4	6
66	Novel Compound Heterozygous CBS Mutations Cause Homocystinuria in a Han Chinese Family. Scientific Reports, 2015, 5, 17947.	1.6	6
67	Whole exome sequencing identified novel CRB1 mutations in Chinese and Indian populations with autosomal recessive retinitis pigmentosa. Scientific Reports, 2016, 6, 33681.	1.6	6
68	Identification of Novel Mutations in the <i>FZD4</i> and <i>NDP</i> Genes in Patients with Familial Exudative Vitreoretinopathy in South India. Genetic Testing and Molecular Biomarkers, 2020, 24, 92-98.	0.3	6
69	A novel deleterious mutation in the COMP gene that causes pseudoachondroplasia. Human Genome Variation, 2016, 3, 16009.	0.4	5
70	Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family. Ophthalmic Genetics, 2018, 39, 487-491.	0.5	5
71	A novel deletion downstream of the <i>PAX6</i> gene identified in a Chinese family with congenital aniridia. Ophthalmic Genetics, 2018, 39, 428-436.	0.5	5
72	Heterozygote lossâ€ofâ€function variants in the <i>LRP5</i> gene cause familial exudative vitreoretinopathy. Clinical and Experimental Ophthalmology, 2022, 50, 441-448.	1.3	5

#	Article	IF	CITATIONS
73	Loss of Wtap results in cerebellar ataxia and degeneration of Purkinje cells. Journal of Genetics and Genomics, 2022, 49, 847-858.	1.7	5
74	Mutation screening in the FBN1 gene responsible for Marfan syndrome and related disorder in Chinese families. Molecular Genetics & Enomic Medicine, 2019, 7, e00594.	0.6	4
75	G-Protein-Coupled Estrogen Receptor 1 Promotes Gender Disparities in Hepatocellular Carcinoma via Modulation of SIN1 and mTOR Complex 2 Activity. Molecular Cancer Research, 2020, 18, 1863-1875.	1.5	4
76	Whole-Exome Sequencing Reveals Novel <i>TSPAN12</i> Variants in Autosomal Dominant Familial Exudative Vitreoretinopathy. Genetic Testing and Molecular Biomarkers, 2021, 25, 399-404.	0.3	4
77	A quick protocol for the preparation of mouse retinal cryosections for immunohistochemistry. Open Biology, 2021, 11, 210076.	1.5	4
78	Evaluation of genome-wide susceptibility loci for high myopia in a Han Chinese population. Ophthalmic Genetics, 2017, 38, 330-334.	0.5	3
79	Evaluation of FGF10 as a candidate gene for high myopia in a Han Chinese population. Eye and Vision (London, England), 2019, 6, 33.	1.4	3
80	Improving Detection Efficiency of SARS-CoV-2 Nucleic Acid Testing. Frontiers in Cellular and Infection Microbiology, 2020, 10, 558472.	1.8	3
81	The Clinical Prognosis of Presence and Location of Late Gadolinium Enhancement by Cardiac Magnetic Resonance Imaging in Patients with Hypertrophic Cardiomyopathy: a Single-Center Cohort Study. Journal of Cardiovascular Translational Research, 2021, 14, 1001-1016.	1.1	3
82	Exploring the R-ISS stage-specific regular networks in the progression of multiple myeloma at single-cell resolution. Science China Life Sciences, 2022, 65, 1811-1823.	2.3	3
83	Mutation in connexin 32 causes charcot–marie–tooth disease in a large Chinese family. Muscle and Nerve, 2010, 42, 715-721.	1.0	2
84	Association of coding and UTR variants in the known regions with wet age-related macular degeneration in Han Chinese population. Journal of Human Genetics, 2018, 63, 1055-1070.	1.1	2
85	A fetal mouse model of ventricular non-compaction using retinoic acid. Pathology Research and Practice, 2019, 215, 152496.	1.0	2
86	Identification of novel variants in the <i>FZD4</i> gene associated with familial exudative vitreoretinopathy in Chinese families. Clinical and Experimental Ophthalmology, 2020, 48, 356-365.	1.3	2
87	Characterization of guanine nucleotide exchange activity of DH domain of human FGD2. Protein Expression and Purification, 2020, 176, 105693.	0.6	2
88	The association of OPG polymorphisms with diabetic retinopathy in Chinese population. Ophthalmic Genetics, 2021, 42, 1-5.	0.5	2
89	PDE4B Proposed as a High Myopia Susceptibility Gene in Chinese Population. Frontiers in Genetics, 2021, 12, 775797.	1.1	2
90	A novel frameshift variant in the <i>TSPAN12</i> gene causes autosomal dominant <scp>FEVR</scp> . Molecular Genetics & Denomic Medicine, 2022, 10, e1949.	0.6	2

#	Article	IF	CITATIONS
91	Genetic Association Study Between the COL11A1 and COL18A1 Genes and High Myopia in a Han Chinese Population. Genetic Testing and Molecular Biomarkers, 2018, 22, 359-365.	0.3	1
92	A modified method for preparation of fluorescent MantGDP bound CDC42. Analytical Biochemistry, 2020, 610, 113846.	1.1	1
93	Probing the Functional and Structural Connectivity Underlying EEG Traveling Waves. Brain Topography, 2022, 35, 66-78.	0.8	1
94	Association of genetic variants in <i>PDGFRA</i> with high myopia in the Han population of southwestern China. Ophthalmic Genetics, 2022, 43, 184-190.	0.5	1