Dai-Wen Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/468034/publications.pdf

Version: 2024-02-01

246 papers 13,849 citations

59 h-index 27406 106 g-index

250 all docs

 $\begin{array}{c} 250 \\ \\ \text{docs citations} \end{array}$

250 times ranked

14758 citing authors

#	Article	IF	CITATIONS
1	Artificially regulated synthesis of nanocrystals in live cells. National Science Review, 2022, 9, .	9.5	10
2	Nearâ€Infraredâ€II Quantum Dots for In Vivo Imaging and Cancer Therapy. Small, 2022, 18, e2104567.	10.0	44
3	Spatiotemporal Quantification of Endosomal Acidification on the Viral Journey. Small, 2022, 18, e2104200.	10.0	5
4	Sphingomyelin-Sequestered Cholesterol Domain Recruits Formin-Binding Protein 17 for Constricting Clathrin-Coated Pits in Influenza Virus Entry. Journal of Virology, 2022, 96, JVI0181321.	3.4	6
5	Quantum Dot-Based Dual-Color In Situ Fluorescence Imaging of the Coevolution of CD68 and CD47 in Breast Cancer. ACS Applied Nano Materials, 2022, 5, 1200-1208.	5.0	1
6	Ultrasmall MnSe Nanoparticles as <i>T</i> ₁ -MRI Contrast Agents for <i>In Vivo</i> Tumor Imaging. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11167-11176.	8.0	9
7	How different are the surfaces of semiconductor Ag2Se quantum dots with various sizes?. Science Bulletin, 2022, 67, 619-625.	9.0	5
8	Uncovering the F-Actin-Based Nuclear Egress Mechanism of Newly Synthesized Influenza A Virus Ribonucleoprotein Complexes by Single-Particle Tracking. Analytical Chemistry, 2022, 94, 5624-5633.	6. 5	4
9	Quantum Dots Tracking Endocytosis and Transport of Proteins Displayed by Mammalian Cells. Analytical Chemistry, 2022, 94, 7567-7575.	6.5	9
10	Quantum Dots with a Compact Amphiphilic Zwitterionic Coating. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28097-28104.	8.0	3
11	Immunoprofiling of Severity and Stage of Bacterial Infectious Diseases by Ultrabright Fluorescent Nanosphere-Based Dyad Test Strips. Analytical Chemistry, 2022, 94, 8818-8826.	6.5	10
12	Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip. Sensors and Actuators B: Chemical, 2022, 368, 132173.	7.8	4
13	A near-infrared-II fluorescence anisotropy strategy for separation-free detection of adenosine triphosphate in complex media. Talanta, 2021, 223, 121721.	5.5	5
14	Real-Time Dissecting the Dynamics of Drug Transportation in the Live Brain. Nano Letters, 2021, 21, 642-650.	9.1	11
15	Surface chemistry tuning the selectivity of carbon nanodots towards Hg2+ recognition. Analytica Chimica Acta, 2021, 1146, 33-40.	5.4	7
16	Holographic Optical Tweezers and Boosting Upconversion Luminescent Resonance Energy Transfer Combined Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas12a Biosensors. ACS Nano, 2021, 15, 8142-8154.	14.6	78
17	Influenza A Viruses Enter Host Cells via Extracellular Ca ²⁺ Influx-Involved Clathrin-Mediated Endocytosis. ACS Applied Bio Materials, 2021, 4, 2044-2051.	4.6	10
18	Precision photothermal therapy and photoacoustic imaging by <i>in situ</i> activatable thermoplasmonics. Chemical Science, 2021, 12, 10097-10105.	7.4	21

#	Article	IF	Citations
19	Quantitatively Switchable pH-Sensitive Photoluminescence of Carbon Nanodots. Journal of Physical Chemistry Letters, 2021, 12, 2727-2735.	4.6	27
20	Detection of SARS-CoV-2 by CRISPR/Cas12a-Enhanced Colorimetry. ACS Sensors, 2021, 6, 1086-1093.	7.8	108
21	Revealing Microtubule-Dependent Slow-Directed Motility by Single-Particle Tracking. Analytical Chemistry, 2021, 93, 5211-5217.	6.5	4
22	Accurate and Efficient Lipoprotein Detection Based on the HCR–DNAzyme Platform. Analytical Chemistry, 2021, 93, 6128-6134.	6.5	13
23	Size-Resolved Single Entity Collision Biosensing for Dual Quantification of MicroRNAs in a Single Run. ACS Applied Materials & Single Run. ACS Applied Run.	8.0	7
24	Quantum Dots: A Promising Fluorescent Label for Probing Virus Trafficking. Accounts of Chemical Research, 2021, 54, 2991-3002.	15.6	44
25	Breaking through the Size Control Dilemma of Silver Chalcogenide Quantum Dots via Trialkylphosphine-Induced Ripening: Leading to Ag ₂ Te Emitting from 950 to 2100 nm. Journal of the American Chemical Society, 2021, 143, 12867-12877.	13.7	65
26	Visualization of Vaccine Dynamics with Quantum Dots for Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 24275-24283.	13.8	22
27	Biomimetic Chip Enhanced Time-Gated Luminescent CRISPR-Cas12a Biosensors under Functional DNA Regulation. Analytical Chemistry, 2021, 93, 12514-12523.	6.5	12
28	Visualization of Vaccine Dynamics with Quantum Dots for Immunotherapy. Angewandte Chemie, 2021, 133, 24477-24485.	2.0	3
29	In-situ quantitation of genome release of Japanese encephalitis viruses by quantum dot-based single-virus tracking. Nano Today, 2021, 40, 101271.	11.9	7
30	Current status and future trends of vaccine development against viral infection and disease. New Journal of Chemistry, 2021, 45, 7437-7449.	2.8	2
31	Precise selection of aptamers targeting PD-L1 positive small extracellular vesicles on magnetic chips. Chemical Communications, 2021, 57, 3555-3558.	4.1	7
32	Proximity-induced exponential amplification reaction triggered by proteins and small molecules. Chemical Communications, 2021, 57, 4714-4717.	4.1	4
33	Ultrasensitive Electrochemiluminescence Biosensor Based on Closed Bipolar Electrode for Alkaline Phosphatase Detection in Single Liver Cancer Cell. Analytical Chemistry, 2021, 93, 1757-1763.	6.5	46
34	Host-cell-assisted construction of a folate-engineered nanocarrier based on viral light particles for targeted cancer therapy. Nanoscale, 2021, 13, 17881-17889.	5.6	1
35	Water-Soluble High-Quality Ag ₂ Te Quantum Dots Prepared by Mutual Adaptation of Synthesis and Surface Modification for In Vivo Imaging. ACS Applied Bio Materials, 2021, 4, 7692-7700.	4.6	11
36	Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021, 4, 943-950.	23.7	137

#	Article	IF	Citations
37	Regulation of Silver Precursor Reactivity via Tertiary Phosphine to Synthesize Near-Infrared Ag ₂ Te with Photoluminescence Quantum Yield of up to 14.7%. Chemistry of Materials, 2021, 33, 9524-9533.	6.7	10
38	Real-Time Monitoring of Temperature Variations around a Gold Nanobipyramid Targeted Cancer Cell under Photothermal Heating by Actively Manipulating an Optically Trapped Luminescent Upconversion Microparticle. Analytical Chemistry, 2020, 92, 1292-1300.	6. 5	17
39	Chemoenzymatic Labeling of Extracellular Vesicles for Visualizing Their Cellular Internalization in Real Time. Analytical Chemistry, 2020, 92, 2103-2111.	6.5	13
40	Molecularly Engineered Macrophageâ€Derived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. Angewandte Chemie, 2020, 132, 4097-4103.	2.0	14
41	Neutralizing Mutations Significantly Inhibit Amyloid Formation by Human Prion Protein and Decrease Its Cytotoxicity. Journal of Molecular Biology, 2020, 432, 828-844.	4.2	19
42	Molecularly Engineered Macrophageâ€Derived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. Angewandte Chemie - International Edition, 2020, 59, 4068-4074.	13.8	164
43	Integrating 808 nm Light-Excited Upconversion Luminescence Powering with DNA Tetrahedron Protection: An Exceptionally Precise and Stable Nanomachine for Intracelluar MicroRNA Tracing. ACS Sensors, 2020, 5, 199-207.	7.8	17
44	One-Step Monitoring of Multiple Enterovirus 71 Infection-Related MicroRNAs Using Core–Satellite Structure of Magnetic Nanobeads and Multicolor Quantum Dots. Analytical Chemistry, 2020, 92, 830-837.	6.5	26
45	One-to-Many Single Entity Electrochemistry Biosensing for Ultrasensitive Detection of microRNA. Analytical Chemistry, 2020, 92, 853-858.	6.5	50
46	A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosensors and Bioelectronics, 2020, 169, 112650.	10.1	57
47	A salt-out strategy for purification of amphiphilic polymer-coated quantum dots. New Journal of Chemistry, 2020, 44, 15341-15344.	2.8	1
48	Lipid-Specific Labeling of Enveloped Viruses with Quantum Dots for Single-Virus Tracking. MBio, 2020, 11 , .	4.1	24
49	Spectrally Combined Encoding for Profiling Heterogeneous Circulating Tumor Cells Using a Multifunctional Nanosphereâ€Mediated Microfluidic Platform. Angewandte Chemie, 2020, 132, 11336-11340.	2.0	4
50	Interfacial Synthesis of Ag 2 S/ZnS Core/Shell Quantum Dots in a Droplet Microreactor. ChemistrySelect, 2020, 5, 5889-5894.	1.5	10
51	Ag ₂ Te Quantum Dots as Contrast Agents for Near-Infrared Fluorescence and Computed Tomography Imaging. ACS Applied Nano Materials, 2020, 3, 6071-6077.	5.0	24
52	A method for the statistical evaluation of the fluorescence intensity of single blinking quantum dots using a confocal fluorescence microscope. Analyst, The, 2020, 145, 3131-3135.	3 . 5	2
53	A liquid biopsy-guided drug release system for cancer theranostics: integrating rapid circulating tumor cell detection and precision tumor therapy. Lab on A Chip, 2020, 20, 1418-1425.	6.0	15
54	Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding. Analytical Chemistry, 2020, 92, 5258-5266.	6.5	12

#	Article	IF	CITATIONS
55	Spectrally Combined Encoding for Profiling Heterogeneous Circulating Tumor Cells Using a Multifunctional Nanosphereâ€Mediated Microfluidic Platform. Angewandte Chemie - International Edition, 2020, 59, 11240-11244.	13.8	36
56	Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots. Science China Chemistry, 2020, 63, 448-453.	8.2	10
57	Chlorophyll-Based Near-Infrared Fluorescent Nanocomposites: Preparation and Optical Properties. ACS Omega, 2020, 5, 14261-14266.	3.5	3
58	Phase Separation and Cytotoxicity of Tau are Modulated by Protein Disulfide Isomerase and S-nitrosylation of this Molecular Chaperone. Journal of Molecular Biology, 2020, 432, 2141-2163.	4.2	28
59	Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chemical Reviews, 2020, 120, 1936-1979.	47.7	131
60	CdZnSeS quantum dots condensed with ordered mesoporous carbon for high-sensitive electrochemiluminescence detection of hydrogen peroxide in live cells. Electrochimica Acta, 2020, 362, 137107.	5.2	19
61	Incorporating luminescence-concentrating upconversion nanoparticles and DNA walkers into optical tweezers assisted imaging: a highly stable and ultrasensitive bead supported assay. Chemical Communications, 2020, 56, 6997-7000.	4.1	12
62	Glucose-functionalized near-infrared Ag ₂ Se quantum dots with renal excretion ability for long-term <i>in vivo</i> tumor imaging. Journal of Materials Chemistry B, 2019, 7, 5782-5788.	5.8	30
63	A virus-induced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. Biomaterials, 2019, 219, 119367.	11.4	53
64	Absolute quantification of particle number concentration using a digital single particle counting system. Mikrochimica Acta, 2019, 186, 529.	5.0	0
65	Nanoscale & Danoscale Advances joint themed collection on nanocarbons. Nanoscale, 2019, 11, 14097-14098.	5.6	1
66	MnCaCs-Biomineralized Oncolytic Virus for Bimodal Imaging-Guided and Synergistically Enhanced Anticancer Therapy. Nano Letters, 2019, 19, 8002-8009.	9.1	41
67	Magnetic Chip Based Extracorporeal Circulation: A New Tool for Circulating Tumor Cell in Vivo Detection. Analytical Chemistry, 2019, 91, 15260-15266.	6.5	21
68	Microvesicle detection by a reduced graphene oxide field-effect transistor biosensor based on a membrane biotinylation strategy. Analyst, The, 2019, 144, 6055-6063.	3.5	15
69	Transformation of Viral Light Particles into Near-Infrared Fluorescence Quantum Dot-Labeled Active Tumor-Targeting Nanovectors for Drug Delivery. Nano Letters, 2019, 19, 7035-7042.	9.1	23
70	Digital Single Virus Immunoassay for Ultrasensitive Multiplex Avian Influenza Virus Detection Based on Fluorescent Magnetic Multifunctional Nanospheres. ACS Applied Materials & Interfaces, 2019, 11, 5762-5770.	8.0	66
71	Cell Membraneâ€Camouflaged NIR II Fluorescent Ag ₂ Te Quantum Dotsâ€Based Nanobioprobes for Enhanced In Vivo Homotypic Tumor Imaging. Advanced Healthcare Materials, 2019, 8, e1900341.	7.6	68
72	Breaking Through Bead-Supported Assay: Integration of Optical Tweezers Assisted Fluorescence Imaging and Luminescence Confined Upconversion Nanoparticles Triggered Luminescent Resonance Energy Transfer (LRET). Analytical Chemistry, 2019, 91, 7950-7957.	6.5	21

#	Article	IF	CITATIONS
73	Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and Ĭ€-Electron System. Journal of Physical Chemistry Letters, 2019, 10, 3621-3629.	4.6	61
74	Economical synthesis of ultra-small Bi ₂ S ₃ nanoparticles for high-sensitive CT imaging. Materials Research Express, 2019, 6, 095005.	1.6	6
75	Coating Magnetic Nanospheres with PEG To Reduce Nonspecific Adsorption on Cells. ACS Omega, 2019, 4, 7391-7399.	3 . 5	14
76	Multifunctional Cellular Beacons with in Situ Synthesized Quantum Dots Make Pathogen Detectable with the Naked Eye. Analytical Chemistry, 2019, 91, 7280-7287.	6.5	16
77	Ultrasmall Quantum Dots with Broad‧pectrum Metal Doping Ability for Trimodal Molecular Imaging. Advanced Functional Materials, 2019, 29, 1901671.	14.9	16
78	Controlled Release of Therapeutic Agents with Near-Infrared Laser for Synergistic Photochemotherapy toward Cervical Cancer. Analytical Chemistry, 2019, 91, 6555-6560.	6.5	15
79	Simple and rapid extracellular vesicles quantification via membrane biotinylation strategy coupled with fluorescent nanospheres-based lateral flow assay. Talanta, 2019, 200, 408-414.	5.5	16
80	A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus. Mikrochimica Acta, 2019, 186, 223.	5.0	74
81	Singleâ€Particle Tracking Reveals the Sequential Entry Process of the Bunyavirus Severe Fever with Thrombocytopenia Syndrome Virus. Small, 2019, 15, e1803788.	10.0	31
82	Bunyaviruses: Singleâ€Particle Tracking Reveals the Sequential Entry Process of the Bunyavirus Severe Fever with Thrombocytopenia Syndrome Virus (Small 6/2019). Small, 2019, 15, 1970032.	10.0	1
83	Evaluation of Luminescence Properties of Single Hydrophilic Upconversion Nanoparticles by Optical Trapping. Journal of Physical Chemistry C, 2019, 123, 10107-10113.	3.1	14
84	Ebola Virus Aptamers: From Highly Efficient Selection to Application on Magnetism-Controlled Chips. Analytical Chemistry, 2019, 91, 3367-3373.	6.5	53
85	Ultrasensitive electrochemical detection of microRNA-21 with wide linear dynamic range based on dual signal amplification. Biosensors and Bioelectronics, 2019, 131, 267-273.	10.1	45
86	Plasmonic and Photothermal Immunoassay via Enzyme-Triggered Crystal Growth on Gold Nanostars. Analytical Chemistry, 2019, 91, 2086-2092.	6.5	103
87	Metal-enhanced fluorescence of gold nanoclusters as a sensing platform for multi-component detection. Sensors and Actuators B: Chemical, 2019, 282, 650-658.	7.8	28
88	Quantum Dot Based Biotracking and Biodetection. Analytical Chemistry, 2019, 91, 532-547.	6.5	58
89	Colorimetric-Fluorescent-Magnetic Nanosphere-Based Multimodal Assay Platform for Salmonella Detection. Analytical Chemistry, 2019, 91, 1178-1184.	6.5	152
90	Using optical tweezers to construct an upconversion luminescent resonance energy transfer analytical platform. Sensors and Actuators B: Chemical, 2019, 282, 790-797.	7.8	5

#	Article	IF	CITATIONS
91	Assembly-enhanced fluorescence from metal nanoclusters and quantum dots for highly sensitive biosensing. Sensors and Actuators B: Chemical, 2019, 279, 334-341.	7.8	33
92	Uncovering the Rab5â€Independent Autophagic Trafficking of Influenza A Virus by Quantumâ€Dotâ€Based Singleâ€Virus Tracking. Small, 2018, 14, e1702841.	10.0	22
93	Photoinduced Electron Transfer Mediated by Coordination between Carboxyl on Carbon Nanodots and Cu ²⁺ Quenching Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 3662-3668.	3.1	56
94	Ultrasmall Pb:Ag ₂ S Quantum Dots with Uniform Particle Size and Bright Tunable Fluorescence in the NIRâ€I Window. Small, 2018, 14, e1703296.	10.0	78
95	Combining Holographic Optical Tweezers with Upconversion Luminescence Encoding: Imaging-Based Stable Suspension Array for Sensitive Responding of Dual Cancer Biomarkers. Analytical Chemistry, 2018, 90, 2639-2647.	6.5	30
96	Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111. Cell Death and Disease, 2018, 9, 67.	6.3	49
97	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€Shifted Photoluminescence. Angewandte Chemie - International Edition, 2018, 57, 1893-1897.	13.8	86
98	Digital Single Virus Electrochemical Enzyme-Linked Immunoassay for Ultrasensitive H7N9 Avian Influenza Virus Counting. Analytical Chemistry, 2018, 90, 1683-1690.	6.5	53
99	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€Shifted Photoluminescence. Angewandte Chemie, 2018, 130, 1911-1915.	2.0	4
100	Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic) Tj ETQq0 0 0 rgBT /Overlog	ck 1.9 Tf 50	0 382 Td (acid
101	A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosensors and Bioelectronics, 2018, 99, 186-192.	10.1	94
102	Rapid detection and subtyping of multiple influenza viruses on a microfluidic chip integrated with controllable micro-magnetic field. Biosensors and Bioelectronics, 2018, 100, 348-354.	10.1	45
103	A "Driver Switchover―Mechanism of Influenza Virus Transport from Microfilaments to Microtubules. ACS Nano, 2018, 12, 474-484.	14.6	59
104	Real-Time Dissecting the Entry and Intracellular Dynamics of Single Reovirus Particle. Frontiers in Microbiology, 2018, 9, 2797.	3 . 5	13
105	Equipping Inner Central Components of Influenza A Virus with Quantum Dots. Analytical Chemistry, 2018, 90, 14020-14028.	6.5	13
106	Internalization of the pseudorabies virus <i>via</i> macropinocytosis analyzed by quantum dot-based single-virus tracking. Chemical Communications, 2018, 54, 11184-11187.	4.1	13
107	Cellular-Beacon-Mediated Counting for the Ultrasensitive Detection of Ebola Virus on an Integrated Micromagnetic Platform. Analytical Chemistry, 2018, 90, 7310-7317.	6.5	22
108	Gd-DTPA-coupled Ag ₂ Se quantum dots for dual-modality magnetic resonance imaging and fluorescence imaging in the second near-infrared window. Nanoscale, 2018, 10, 10699-10704.	5.6	45

#	Article	IF	Citations
109	Enhanced and High-Purity Enrichment of Circulating Tumor Cells Based on Immunomagnetic Nanospheres. ACS Applied Nano Materials, 2018, 1, 4019-4027.	5.0	9
110	Stable CsPbBr ₃ perovskite quantum dots with high fluorescence quantum yields. New Journal of Chemistry, 2018, 42, 9496-9500.	2.8	71
111	Chip-Assisted Single-Cell Biomarker Profiling of Heterogeneous Circulating Tumor Cells Using Multifunctional Nanospheres. Analytical Chemistry, 2018, 90, 10518-10526.	6.5	50
112	Bright quantum dots emitting at $\hat{a}^{-1/4}1,600$ nm in the NIR-IIb window for deep tissue fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6590-6595.	7.1	310
113	Target-triggered signal turn-on detection of prostate specific antigen based on metal-enhanced fluorescence of Ag@SiO ₂ @SiO ₂ -RuBpy composite nanoparticles. Nanotechnology, 2017, 28, 065501.	2.6	19
114	Folate-Engineered Microvesicles for Enhanced Target and Synergistic Therapy toward Breast Cancer. ACS Applied Materials & District Sciences, 2017, 9, 5100-5108.	8.0	48
115	Efficient Enrichment and Analyses of Bacteria at Ultralow Concentration with Quick-Response Magnetic Nanospheres. ACS Applied Materials & Interfaces, 2017, 9, 9416-9425.	8.0	49
116	Nanosphere-based one-step strategy for efficient and nondestructive detection of circulating tumor cells. Biosensors and Bioelectronics, 2017, 94, 219-226.	10.1	52
117	Tracking single baculovirus retrograde transportation in host cell via quantum dot-labeling of virus internal component. Journal of Nanobiotechnology, 2017, 15, 37.	9.1	11
118	Multifunctional Screening Platform for the Highly Efficient Discovery of Aptamers with High Affinity and Specificity. Analytical Chemistry, 2017, 89, 6535-6542.	6.5	47
119	Real-Time Dissection of Distinct Dynamin-Dependent Endocytic Routes of Influenza A Virus by Quantum Dot-Based Single-Virus Tracking. ACS Nano, 2017, 11, 4395-4406.	14.6	61
120	Integrating optical tweezers with up-converting luminescence: a non-amplification analytical platform for quantitative detection of microRNA-21 sequences. Chemical Communications, 2017, 53, 4092-4095.	4.1	19
121	Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip. Scientific Reports, 2017, 7, 44835.	3.3	8
122	Magnetic and Folate Functionalization Enables Rapid Isolation and Enhanced Tumor-Targeting of Cell-Derived Microvesicles. ACS Nano, 2017, 11, 277-290.	14.6	130
123	Ultrasensitive Ebola Virus Detection Based on Electroluminescent Nanospheres and Immunomagnetic Separation. Analytical Chemistry, 2017, 89, 2039-2048.	6.5	58
124	Dual Amplification Fluorescence Assay for Alpha Fetal Protein Utilizing Immunohybridization Chain Reaction and Metal-Enhanced Fluorescence of Carbon Nanodots. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37606-37614.	8.0	34
125	Cancer Treatment: Development of a Dualâ€Modally Traceable Nanoplatform for Cancer Theranostics Using Natural Circulating Cellâ€Derived Microparticles in Oral Cancer Patients (Adv. Funct. Mater.) Tj ETQq1 1 0	.7814131.4 rş	gBT /Overloc
126	Revealing the biodistribution and clearance of Ag ₂ Se near-infrared quantum dots in mice. New Journal of Chemistry, 2017, 41, 12721-12725.	2.8	18

#	Article	IF	Citations
127	Dual-Signal Readout Nanospheres for Rapid Point-of-Care Detection of Ebola Virus Glycoprotein. Analytical Chemistry, 2017, 89, 13105-13111.	6.5	128
128	Preparation of Monodisperse Hydrophilic Quantum Dots with Amphiphilic Polymers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39901-39906.	8.0	17
129	Nearâ€Infrared Fluorescent Ag ₂ Seâ€"Cetuximab Nanoprobes for Targeted Imaging and Therapy of Cancer. Small, 2017, 13, 1602309.	10.0	61
130	Colorimetric and visual determination of DNase I activity using gold nanoparticles as an indicator. Mikrochimica Acta, 2017, 184, 101-106.	5.0	16
131	One-step separation-free detection of carcinoembryonic antigen in whole serum: Combination of two-photon excitation fluorescence and optical trapping. Biosensors and Bioelectronics, 2017, 90, 146-152.	10.1	17
132	Development of a Dualâ€Modally Traceable Nanoplatform for Cancer Theranostics Using Natural Circulating Cellâ€Derived Microparticles in Oral Cancer Patients. Advanced Functional Materials, 2017, 27, 1703482.	14.9	16
133	Fluorescenceâ€Converging Carbon Nanodotsâ€Hybridized Silica Nanosphere. Small, 2016, 12, 4702-4706.	10.0	63
134	Fluorescence Detection of H5N1 Virus Gene Sequences Based on Optical Tweezers with Two-Photon Excitation Using a Single Near Infrared Nanosecond Pulse Laser. Analytical Chemistry, 2016, 88, 4432-4439.	6.5	23
135	Intracellular self-assembly based multi-labeling of key viral components: Envelope, capsid and nucleic acids. Biomaterials, 2016, 99, 24-33.	11.4	17
136	Near-infrared Ag ₂ Se quantum dots with distinct absorption features and high fluorescence quantum yields. RSC Advances, 2016, 6, 38183-38186.	3.6	40
137	Dual-component gene detection for H7N9 virus – The combination of optical trapping and bead-based fluorescence assay. Biosensors and Bioelectronics, 2016, 86, 1031-1037.	10.1	13
138	Reliable Digital Single Molecule Electrochemistry for Ultrasensitive Alkaline Phosphatase Detection. Analytical Chemistry, 2016, 88, 9166-9172.	6.5	73
139	Labeling viral envelope lipids with quantum dots by harnessing the biotinylated lipid-self-inserted cellular membrane. Biomaterials, 2016, 106, 69-77.	11.4	40
140	Determination of the Absolute Number Concentration of Nanoparticles and the Active Affinity Sites on Their Surfaces. Analytical Chemistry, 2016, 88, 10134-10142.	6.5	15
141	Electrochemical Monitoring of Hydrogen Sulfide Release from Single Cells. ChemElectroChem, 2016, 3, 1998-2002.	3.4	30
142	Real-Time Monitoring of Nitric Oxide at Single-Cell Level with Porphyrin-Functionalized Graphene Field-Effect Transistor Biosensor. Analytical Chemistry, 2016, 88, 11115-11122.	6.5	78
143	Sensitive and Quantitative Detection of C-Reaction Protein Based on Immunofluorescent Nanospheres Coupled with Lateral Flow Test Strip. Analytical Chemistry, 2016, 88, 6577-6584.	6.5	180
144	Biofunctionalized magnetic nanospheres-based cell sorting strategy for efficient isolation, detection and subtype analyses of heterogeneous circulating hepatocellular carcinoma cells. Biosensors and Bioelectronics, 2016, 85, 633-640.	10.1	36

#	Article	IF	Citations
145	Purification of quantum dot-based bioprobes via high-performance size exclusion chromatography. Talanta, 2016, 159, 64-73.	5. 5	13
146	DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences. Biosensors and Bioelectronics, 2016, 85, 837-843.	10.1	82
147	Ultrasmall Magnetically Engineered Ag ₂ Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles. Journal of the American Chemical Society, 2016, 138, 1893-1903.	13.7	143
148	Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. Nanoscale, 2016, 8, 12406-12429.	5.6	93
149	Visual and efficient immunosensor technique for advancing biomedical applications of quantum dots on Salmonella detection and isolation. Nanoscale, 2016, 8, 4688-4698.	5.6	14
150	Photocatalysis-Induced Renewable Field-Effect Transistor for Protein Detection. Analytical Chemistry, 2016, 88, 4048-4054.	6.5	49
151	Dissecting the Factors Affecting the Fluorescence Stability of Quantum Dots in Live Cells. ACS Applied Materials & Company (1988) amp; Interfaces, 2016, 8, 8401-8408.	8.0	27
152	A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. Lab on A Chip, 2016, 16, 1214-1223.	6.0	75
153	A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe. Biosensors and Bioelectronics, 2016, 78, 431-437.	10.1	22
154	Electrochemical Methods to Study Photoluminescent Carbon Nanodots: Preparation, Photoluminescence Mechanism and Sensing. ACS Applied Materials & Interfaces, 2016, 8, 28372-28382.	8.0	44
155	Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy. ACS Nano, 2016, 10, 1147-1155.	14.6	30
156	Tracking single viruses infecting their host cells using quantum dots. Chemical Society Reviews, 2016, 45, 1211-1224.	38.1	106
157	A High Throughput Micro-Chamber Array Device for Single Cell Clonal Cultivation and Tumor Heterogeneity Analysis. Scientific Reports, 2015, 5, 11937.	3.3	17
158	Biometallizationâ€Based Electrochemical Magnetoimmunosensing Strategy for Avian Influenza A (H7N9) Virus Particle Detection. Chemistry - an Asian Journal, 2015, 10, 1387-1393.	3.3	24
159	Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods. Small, 2015, 11, 5416-5422.	10.0	19
160	Rapid and Quantitative Detection of Avian Influenza A(H7N9) Virions in Complex Matrices Based on Combined Magnetic Capture and Quantum Dot Labeling. Small, 2015, 11, 5280-5288.	10.0	32
161	Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant and Soil, 2015, 391, 265-282.	3.7	89
162	A room-temperature method for coating a ZnS shell on semiconductor quantum dots. Journal of Materials Chemistry C, 2015, 3, 964-967.	5.5	16

#	Article	IF	Citations
163	Transformation of Cellâ€Derived Microparticles into Quantumâ€Dotâ€Labeled Nanovectors for Antitumor siRNA Delivery. Angewandte Chemie - International Edition, 2015, 54, 1036-1040.	13.8	86
164	Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosensors and Bioelectronics, 2015, 68, 586-592.	10.1	54
165	An exonuclease III-aided "turn-on―fluorescence assay for mercury ions based on graphene oxide and metal-mediated "molecular beacon― RSC Advances, 2015, 5, 12994-12999.	3.6	10
166	Photoluminescenceâ€Tunable Carbon Nanodots: Surfaceâ€State Energyâ€Gap Tuning. Advanced Materials, 2015, 27, 1663-1667.	21.0	658
167	An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots. Nanoscale, 2015, 7, 5969-5973.	5.6	73
168	Droplet-based microreactor for synthesis of water-soluble Ag ₂ S quantum dots. Nanotechnology, 2015, 26, 275701.	2.6	28
169	Combination of dynamic magnetophoretic separation and stationary magnetic trap for highly sensitive and selective detection of Salmonella typhimurium in complex matrix. Biosensors and Bioelectronics, 2015, 74, 628-636.	10.1	59
170	Sequence-dependent abnormal aggregation of human Tau fragment in an inducible cell model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1561-1573.	3.8	12
171	Simultaneous Point-of-Care Detection of Enterovirus 71 and Coxsackievirus B3. Analytical Chemistry, 2015, 87, 11105-11112.	6.5	43
172	A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots. Nanoscale, 2015, 7, 19310-19316.	5.6	16
173	Clicking Hydrazine and Aldehyde: The Way to Labeling of Viruses with Quantum Dots. ACS Nano, 2015, 9, 11750-11760.	14.6	42
174	Indirect immunofluorescence detection of E. coli O157:H7 with fluorescent silica nanoparticles. Biosensors and Bioelectronics, 2015, 66, 95-102.	10.1	44
175	Quantum Dots-Based Quantitative and In Situ Multiple Imaging on Ki67 and Cytokeratin to Improve Ki67 Assessment in Breast Cancer. PLoS ONE, 2015, 10, e0122734.	2.5	36
176	Exploring Sialic Acid Receptorsâ€Related Infection Behavior of Avian Influenza Virus in Human Bronchial Epithelial Cells by Singleâ€Particle Tracking. Small, 2014, 10, 2712-2720.	10.0	24
177	Sensitive multiplexed DNA detection using silica nanoparticles as the target capturing platform. Talanta, 2014, 128, 263-267.	5.5	18
178	Quick-Response Magnetic Nanospheres for Rapid, Efficient Capture and Sensitive Detection of Circulating Tumor Cells. ACS Nano, 2014, 8, 941-949.	14.6	228
179	Enzyme-Induced Metallization as a Signal Amplification Strategy for Highly Sensitive Colorimetric Detection of Avian Influenza Virus Particles. Analytical Chemistry, 2014, 86, 2752-2759.	6.5	137
180	Control of magnetic field distribution by using nickel powder@PDMS pillars in microchannels. RSC Advances, 2014, 4, 17660-17666.	3.6	22

#	Article	IF	CITATIONS
181	Globally Visualizing the Microtubule-Dependent Transport Behaviors of Influenza Virus in Live Cells. Analytical Chemistry, 2014, 86, 3902-3908.	6.5	51
182	Recognition Kinetics of Biomolecules at the Surface of Different-Sized Spheres. Biophysical Journal, 2014, 107, 165-173.	0.5	11
183	Revealing Carbon Nanodots As Coreactants of the Anodic Electrochemiluminescence of Ru(bpy) ₃ ²⁺ . Analytical Chemistry, 2014, 86, 7224-7228.	6.5	83
184	Uniform Fluorescent Nanobioprobes for Pathogen Detection. ACS Nano, 2014, 8, 5116-5124.	14.6	120
185	Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters. Nanoscale, 2014, 6, 13126-13134.	5 . 6	34
186	Evaluation of nonspecific interactions between quantum dots and proteins. Physical Chemistry Chemical Physics, 2014, 16, 7677.	2.8	11
187	Preparation of RuBpy-doped Silica Fluorescent Nanoprobes and Their Applications to the Recognition of Liver Cancer Cells. Chinese Journal of Analytical Chemistry, 2014, 42, 326-331.	1.7	5
188	Labeling the nucleocapsid of enveloped baculovirus with quantum dots for single-virus tracking. Biomaterials, 2014, 35, 2295-2301.	11.4	48
189	Anisotropic cell-to-cell spread of vaccinia virus on microgrooved substrate. Biomaterials, 2014, 35, 5049-5055.	11.4	12
190	Knockdown of Y-box-binding protein-1 inhibits the malignant progression of HT-29 colorectal adenocarcinoma cells by reversing epithelial-mesenchymal transition. Molecular Medicine Reports, 2014, 10, 2720-2728.	2.4	11
191	Threeâ€Dimensional Tracking of Rab5―and Rab7â€Associated Infection Process of Influenza Virus. Small, 2014, 10, 4746-4753.	10.0	37
192	Intercropping Enhances Productivity and Maintains the Most Soil Fertility Properties Relative to Sole Cropping. PLoS ONE, 2014, 9, e113984.	2.5	79
193	Fast and High-Accuracy Localization for Three-Dimensional Single-Particle Tracking. Scientific Reports, 2013, 3, 2462.	3.3	46
194	Self-biotinylation and site-specific double labeling of baculovirus using quantum dots for single-virus in-situ tracking. Biomaterials, 2013, 34, 7506-7518.	11.4	42
195	Site-specific labeling of baculovirus in an integrated microfluidic device. Lab on A Chip, 2013, 13, 860.	6.0	6
196	Mechanism-Oriented Controllability of Intracellular Quantum Dots Formation: The Role of Glutathione Metabolic Pathway. ACS Nano, 2013, 7, 2240-2248.	14.6	96
197	A Simple Point-of-Care Microfluidic Immunomagnetic Fluorescence Assay for Pathogens. Analytical Chemistry, 2013, 85, 2645-2651.	6.5	77
198	Ag ₂ Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window. ACS Applied Materials & Dots Window. ACS Applied Window. ACS Applied Wi	8.0	188

#	Article	IF	Citations
199	One-Step Sensitive Detection of Salmonella typhimurium by Coupling Magnetic Capture and Fluorescence Identification with Functional Nanospheres. Analytical Chemistry, 2013, 85, 1223-1230.	6.5	125
200	Optically Encoded Multifunctional Nanospheres for One-Pot Separation and Detection of Multiplex DNA Sequences. Analytical Chemistry, 2013, 85, 11929-11935.	6.5	65
201	Generation of sub-femtoliter droplet by T-junction splitting on microfluidic chips. Applied Physics Letters, 2013, 102, 123502.	3.3	8
202	Effectively and Efficiently Dissecting the Infection of Influenza Virus by Quantum-Dot-Based Single-Particle Tracking. ACS Nano, 2012, 6, 141-150.	14.6	127
203	High-efficiency dual labeling of influenza virus for single-virus imaging. Biomaterials, 2012, 33, 7828-7833.	11.4	61
204	Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem. Journal of Materials Chemistry, 2012, 22, 3713.	6.7	34
205	Surface Labeling of Enveloped Viruses Assisted by Host Cells. ACS Chemical Biology, 2012, 7, 683-688.	3.4	42
206	Synthesis, magnetic properties, DNA binding and cleavage activity of a new oxalato bridged copper(II) complex. Applied Organometallic Chemistry, 2012, 26, 511-517.	3.5	4
207	Shifting and non-shifting fluorescence emitted by carbon nanodots. Journal of Materials Chemistry, 2012, 22, 5917.	6.7	177
208	Emission-Tunable Near-Infrared Ag ₂ S Quantum Dots. Chemistry of Materials, 2012, 24, 3-5.	6.7	183
209	Robust and Highly Sensitive Fluorescence Approach for Point-of-Care Virus Detection Based on Immunomagnetic Separation. Analytical Chemistry, 2012, 84, 2358-2365.	6.5	73
210	Myosin-Driven Intercellular Transportation of Wheat Germ Agglutinin Mediated by Membrane Nanotubes between Human Lung Cancer Cells. ACS Nano, 2012, 6, 10033-10041.	14.6	52
211	Fluorescent–magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis. Nanotechnology, 2012, 23, 035602.	2.6	40
212	Ultrasmall Near-Infrared Ag ₂ Se Quantum Dots with Tunable Fluorescence for <i>iin Vivo</i> Imaging. Journal of the American Chemical Society, 2012, 134, 79-82.	13.7	313
213	Near-Infrared Electrogenerated Chemiluminescence of Ultrasmall Ag ₂ Se Quantum Dots for the Detection of Dopamine. Analytical Chemistry, 2012, 84, 8932-8935.	6.5	162
214	Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging inÂvivo. Biomaterials, 2012, 33, 5130-5135.	11.4	288
215	Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer. Biomaterials, 2012, 33, 5742-5752.	11.4	45
216	Controlling the Magnetic Field Distribution on the Micrometer Scale and Generation of Magnetic Bead Patterns for Microfluidic Applications. Langmuir, 2011, 27, 5147-5156.	3.5	40

#	Article	IF	CITATIONS
217	Energy-Level-Related Response of Cathodic Electrogenerated-Chemiluminescence of Self-Assembled CdSe/ZnS Quantum Dot Films. Journal of Physical Chemistry C, 2011, 115, 18822-18828.	3.1	45
218	Fluorescent-Magnetic-Biotargeting Multifunctional Nanobioprobes for Detecting and Isolating Multiple Types of Tumor Cells. ACS Nano, 2011, 5, 761-770.	14.6	192
219	Clathrin-Mediated Endocytosis in Living Host Cells Visualized through Quantum Dot Labeling of Infectious Hematopoietic Necrosis Virus. Journal of Virology, 2011, 85, 6252-6262.	3.4	92
220	Synthesis of sub-5 nm Au–Ag alloy nanoparticles using bio-reducing agent in aqueous solution. Journal of Materials Chemistry, 2011, 21, 17080.	6.7	32
221	Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays. International Journal of Nanomedicine, 2011, 6, 2265.	6.7	25
222	Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials, 2011, 32, 7616-7624.	11.4	62
223	A multicomponent recognition and separation system established via fluorescent, magnetic, dualencoded multifunctional bioprobes. Biomaterials, 2011, 32, 1177-1184.	11.4	57
224	Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism. Advanced Materials, 2011, 23, 5801-5806.	21.0	872
225	One-to-one quantum dot-labeled single long DNA probes. Biomaterials, 2011, 32, 5471-5477.	11.4	32
226	PEG-interspersed nitrilotriacetic acid-functionalized quantum dots for site-specific labeling of prion proteins expressed on cell surfaces. Biomaterials, 2010, 31, 8362-8370.	11.4	18
227	The quantitative detection of total HER2 load by quantum dots and the identification of a new subtype of breast cancer with different 5-year prognosis. Biomaterials, 2010, 31, 8818-8825.	11.4	55
228	Kineticsâ€Controlled Formation of Gold Clusters Using a Quasiâ€Biological System. Advanced Functional Materials, 2010, 20, 3673-3677.	14.9	22
229	Multipole-plasmon-enhanced förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects. Applied Physics Letters, 2010, 96, 043106.	3.3	35
230	Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system. Nanoscale, 2010, 2, 2120.	5.6	20
231	Clickable Gold Nanoparticles as the Building Block of Nanobioprobes. Langmuir, 2010, 26, 10171-10176.	3.5	34
232	Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots. Advanced Functional Materials, 2009, 19, 2359-2364.	14.9	178
233	Virus imaging: Small 6/2009. Small, 2009, 5, NA-NA.	10.0	0
234	Imaging Viral Behavior in Mammalian Cells with Selfâ€Assembled Capsid–Quantumâ€Dot Hybrid Particles. Small, 2009, 5, 718-726.	10.0	120

#	Article	IF	CITATIONS
235	Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates. Biosensors and Bioelectronics, 2009, 24, 1311-1317.	10.1	61
236	Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. Journal of Materials Chemistry, 2009, 19, 7771.	6.7	146
237	Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications, 2008, , 5116.	4.1	786
238	Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking. Journal of Physical Chemistry C, 2008, 112, 18904-18910.	3.1	7
239	Visual Recognition and Efficient Isolation of Apoptotic Cells with Fluorescent-Magnetic-Biotargeting Multifunctional Nanospheres. Clinical Chemistry, 2007, 53, 2177-2185.	3.2	60
240	Wheat Germ Agglutinin-Modified Trifunctional Nanospheres for Cell Recognition. Bioconjugate Chemistry, 2007, 18, 1749-1755.	3.6	62
241	A micropillarâ€integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis, 2007, 28, 4713-4722.	2.4	77
242	Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism. Small, 2005, 1, 506-509.	10.0	142
243	A Method for the Fabrication of Low-Noise Carbon Fiber Nanoelectrodes. Analytical Chemistry, 2001, 73, 1048-1052.	6.5	114
244	Powder Microelectrodes for Capillary Electrophoresis with Amperometric Detection Analytical Sciences, 2000, 16, 807-810.	1.6	12
245	DNA-Modified Electrodes. Part 5. Electrochemical Behavior of Co2+ at DNA-Modified Gold Electrodes in the Presence of 2,2'-Bipyridyl Analytical Sciences, 1999, 15, 471-475.	1.6	12
246	Flectrochemical oxidation of DNA at a gold microelectrode. Flectroanalysis, 1995, 7, 774-777.	2.9	59