
Georgiy B Shul'pin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4680301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homogeneous oxidation of C–H bonds with <i>m</i> -CPBA catalysed by a Co/Fe system: mechanistic insights from the point of view of the oxidant. Catalysis Science and Technology, 2022, 12, 282-299.	4.1	7
2	Exploring Cagelike Silsesquioxane Building Blocks for the Design of Heterometallic Cu ₄ /M ₄ Architectures. Crystal Growth and Design, 2022, 22, 2146-2157.	3.0	11
3	Novel Copper(II) Complexes with Dipinodiazafluorene Ligands: Synthesis, Structure, Magnetic and Catalytic Properties. Molecules, 2022, 27, 4072.	3.8	6
4	Oxidation of Organic Compounds with Peroxides Catalyzed by Polynuclear Metal Compounds. Catalysts, 2021, 11, 186.	3.5	16
5	Novel Oxidovanadium Complexes with Redox-Active R-Mian and R-Bian Ligands: Synthesis, Structure, Redox and Catalytic Properties. Molecules, 2021, 26, 5706.	3.8	26
6	Vanadium(IV) Complexes with Methyl-Substituted 8-Hydroxyquinolines: Catalytic Potential in the Oxidation of Hydrocarbons and Alcohols with Peroxides and Biological Activity. Molecules, 2021, 26, 6364.	3.8	4
7	Copper complexes with 1,10-phenanthrolines as efficient catalysts for oxidation of alkanes by hydrogen peroxide. Inorganica Chimica Acta, 2020, 512, 119889.	2.4	17
8	Coordination Affinity of Cu(II)-Based Silsesquioxanes toward N,N-Ligands and Associated Skeletal Rearrangements: Cage and Ionic Products Exhibiting a High Catalytic Activity in Oxidation Reactions. Inorganic Chemistry, 2020, 59, 4536-4545.	4.0	22
9	New Cu4Na4- and Cu5-Based Phenylsilsesquioxanes. Synthesis via Complexation with 1,10-Phenanthroline, Structures and High Catalytic Activity in Alkane Oxidations with Peroxides in Acetonitrile. Catalysts, 2019, 9, 701.	3.5	15
10	Copper(<scp>ii</scp>) complexes with 2,2â€2:6â€2,2â€2â€2-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine substituted with quinolines. Synthesis, structure, antiproliferative activity, and catalytic activity in the oxidation of alkanes and alcohols with peroxides. Dalton Transactions, 2019, 48, 12656-12673.	3.3	44
11	Hexacoppergermsesquioxanes as complexes with N-ligands: Synthesis, structure and catalytic properties. Journal of Organometallic Chemistry, 2019, 884, 17-28.	1.8	21
12	New Oxidovanadium(IV) Complexes with 2,2′-bipyridine and 1,10-phenathroline Ligands: Synthesis, Structure and High Catalytic Activity in Oxidations of Alkanes and Alcohols with Peroxides. Catalysts, 2019, 9, 217.	3.5	24
13	Cyclopentadienyl cobalt(III) complexes: Synthetic and catalytic chemistry. Coordination Chemistry Reviews, 2019, 387, 1-31.	18.8	41
14	Palanquin-Like Cu4Na4 Silsesquioxane Synthesis (via Oxidation of 1,1-bis(Diphenylphosphino)methane), Structure and Catalytic Activity in Alkane or Alcohol Oxidation with Peroxides. Catalysts, 2019, 9, 154.	3.5	24
15	Metal Complexes Containing Redox-Active Ligands in Oxidation of Hydrocarbons and Alcohols: A Review. Catalysts, 2019, 9, 1046.	3.5	33
16	Metal-Catalyzed Oxidation of C–H Compounds with Peroxides in Unconventional Solvents. Green Chemistry and Sustainable Technology, 2019, , 1-35.	0.7	0
17	Heptanuclear Cage Cu ^{II} â€Silsesquioxanes: Synthesis, Structure and Catalytic Activity. European Journal of Inorganic Chemistry, 2018, 2018, 2505-2511.	2.0	26
18	High Catalytic Activity of Vanadium Complexes in Alkane Oxidations with Hydrogen Peroxide: An Effect of 8-Hydroxyquinoline Derivatives as Noninnocent Ligands. Inorganic Chemistry, 2018, 57, 1824-1839.	4.0	51

#	Article	IF	CITATIONS
19	Hydrocarbon functionalization on palladium compounds in acidic solutions (a historical review). Journal of Organometallic Chemistry, 2018, 867, 25-32.	1.8	5
20	Mild and Regioselective Hydroxylation of Methyl Group in Neocuproine: Approach to an N,O-Ligated Cu ₆ Cage Phenylsilsesquioxane. Organometallics, 2018, 37, 168-171.	2.3	31
21	Family of penta- and hexanuclear metallasilsesquioxanes: Synthesis, structure and catalytic properties in oxidations. Journal of Organometallic Chemistry, 2018, 867, 133-141.	1.8	23
22	Heptanuclear Fe ₅ Cu ₂ -Phenylgermsesquioxane containing 2,2′-Bipyridine: Synthesis, Structure, and Catalytic Activity in Oxidation of C–H Compounds. Inorganic Chemistry, 2018, 57, 528-534.	4.0	25
23	A new "bicycle helmet―like copper(<scp>ii</scp>),sodiumphenylsilsesquioxane. Synthesis, structure and catalytic activity. Dalton Transactions, 2018, 47, 15666-15669.	3.3	18
24	Cu42Ge24Na4—A Giant Trimetallic Sesquioxane Cage: Synthesis, Structure, and Catalytic Activity. Catalysts, 2018, 8, 484.	3.5	14
25	New oxidovanadium(<scp>iv</scp>) complex with a BIAN ligand: synthesis, structure, redox properties and catalytic activity. New Journal of Chemistry, 2018, 42, 16200-16210.	2.8	42
26	High-Cluster (Cu ₉) Cage Silsesquioxanes: Synthesis, Structure, and Catalytic Activity. Inorganic Chemistry, 2018, 57, 11524-11529.	4.0	40
27	Oxidative functionalization of C–H compounds induced by the extremely efficient osmium catalysts (a) Tj ETQq	1 1 0.784 4.1	∙314 rgBT /○
28	Synthesis, structures and catalytic activity of p-tolylimido rhenium(V) complexes incorporating quinoline-derived ligands. Inorganica Chimica Acta, 2017, 455, 683-695.	2.4	12
29	A hydroperoxo-rebound mechanism of alkane oxidation with hydrogen peroxide catalyzed by binuclear manganese(IV) complex in the presence of an acid with involvement of atmospheric dioxygen. Inorganica Chimica Acta, 2017, 455, 666-676.	2.4	56
30	Oxidation of C-H compounds with peroxides catalyzed by polynuclear transition metal complexes in Si- or Ge-sesquioxane frameworks: AÂreview. Journal of Organometallic Chemistry, 2017, 849-850, 201-218.	1.8	52
31	Unusual Tri-, Hexa-, and Nonanuclear Cu(II) Cage Methylsilsesquioxanes: Synthesis, Structures, and Catalytic Activity in Oxidations with Peroxides. Inorganic Chemistry, 2017, 56, 4093-4103.	4.0	54
32	Ionic Complexes of Tetra―and Nonanuclear Cage Copper(II) Phenylsilsesquioxanes: Synthesis and High Activity in Oxidative Catalysis. ChemCatChem, 2017, 9, 4437-4447.	3.7	33
33	Si ₁₀ Cu ₆ N ₄ Cage Hexacoppersilsesquioxanes Containing N Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorganic Chemistry, 2017, 56, 15026-15040.	4.0	36
34	Copper(<scp>ii</scp>) complexes of functionalized 2,2â€2:6â€2,2â€2â€2-terpyridines and 2,6-di(thiazol-2-yl)pyric structure, spectroscopy, cytotoxicity and catalytic activity. Dalton Transactions, 2017, 46, 9591-9604.	line;	69
35	High Catalytic Activity of Heterometallic (Fe6Na7 and Fe6Na6) Cage Silsesquioxanes in Oxidations with Peroxides. Catalysts, 2017, 7, 101.	3.5	37
36	New Trends in Oxidative Functionalization of Carbon–Hydrogen Bonds: A Review. Catalysts, 2016, 6, 50.	3.5	167

#	Article	IF	CITATIONS
37	Novel Cage-Like Hexanuclear Nickel(II) Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides. Molecules, 2016, 21, 665.	3.8	32
38	Stereoselective Alkane Oxidation with meta-Chloroperoxybenzoic Acid (MCPBA) Catalyzed by Organometallic Cobalt Complexes. Molecules, 2016, 21, 1593.	3.8	29
39	Oxidation of hydroxyacetone (acetol) with hydrogen peroxide in acetonitrile solution catalyzed by iron(III) chloride. Journal of Molecular Catalysis A, 2016, 422, 103-114.	4.8	15
40	Oxidation of olefins with H2O2 catalyzed by gallium(III) nitrate and aluminum(III) nitrate in solution. Journal of Molecular Catalysis A, 2016, 422, 216-220.	4.8	11
41	A heterometallic (Fe ₆ Na ₈) cage-like silsesquioxane: synthesis, structure, spin glass behavior and high catalytic activity. RSC Advances, 2016, 6, 48165-48180.	3.6	53
42	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 15360-15363.	13.8	36
43	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie, 2016, 128, 15586-15589.	2.0	1
44	p-Tolylimido rhenium(<scp>v</scp>) complexes with phenolate-based ligands: synthesis, X-ray studies and catalytic activity in oxidation with tert-butylhydroperoxide. Dalton Transactions, 2016, 45, 334-351.	3.3	10
45	Oxidation of olefins with H ₂ O ₂ catalysed by salts of group III metals (Ga, In,) Tj ETQq1 1343-1356.	1 0.78431 4.1	.4 rgBT /Ove 57
46	Frontispiece: Cage-like Copper(II) Silsesquioxanes: Transmetalation Reactions and Structural, Quantum Chemical, and Catalytic Studies. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
47	Oxidation of alkanes and benzene with hydrogen peroxide catalyzed by ferrocene in the presence of acids. Journal of Organometallic Chemistry, 2015, 793, 217-231.	1.8	25
48	Simple soluble Bi(<scp>iii</scp>) salts as efficient catalysts for the oxidation of alkanes with H ₂ O ₂ . Catalysis Science and Technology, 2015, 5, 2174-2187.	4.1	29
49	Stable organoplatinum complexes as intermediates and models inÂhydrocarbon functionalization. Journal of Organometallic Chemistry, 2015, 793, 4-16.	1.8	33
50	Oxidation of Olefins with Hydrogen Peroxide Catalyzed by Bismuth Salts: A Mechanistic Study. ACS Catalysis, 2015, 5, 3823-3835.	11.2	40
51	Cageâ€like Copper(II) Silsesquioxanes: Transmetalation Reactions and Structural, Quantum Chemical, and Catalytic Studies. Chemistry - A European Journal, 2015, 21, 8758-8770.	3.3	65
52	Alkane oxidation with peroxides catalyzed by cage-like copper(<scp>ii</scp>) silsesquioxanes. New Journal of Chemistry, 2015, 39, 187-199.	2.8	46
53	Oxidation of hydrocarbons and alcohols with peroxides catalyzed by new π-cymene osmium complexes. Journal of Organometallic Chemistry, 2015, 784, 52-61.	1.8	22
54	Solvent-controlled synthesis of tetranuclear cage-like copper(<scp>ii</scp>) silsesquioxanes. Remarkable features of the cage structures and their high catalytic activity in oxidation with peroxides. Dalton Transactions, 2014, 43, 872-882.	3.3	69

#	Article	IF	CITATIONS
55	New p-tolylimido rhenium(<scp>v</scp>) complexes with carboxylate-based ligands: synthesis, structures and their catalytic potential in oxidations with peroxides. Dalton Transactions, 2014, 43, 5759-5776.	3.3	24
56	Oxidation of hydrocarbons with H ₂ O ₂ /O ₂ catalyzed by osmium complexes containing p-cymene ligands in acetonitrile. Catalysis Science and Technology, 2014, 4, 3214-3226.	4.1	38
57	Radical decomposition of hydrogen peroxide catalyzed by aqua complexes [M(H2O)]2+ (M = Be, Zn, Cd). Journal of Catalysis, 2014, 313, 135-148.	6.2	47
58	Limonene epoxidation with H2O2 promoted by Al2O3: Kinetic study, experimental design. Journal of Catalysis, 2014, 319, 71-86.	6.2	50
59	C–H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity. Dalton Transactions, 2013, 42, 12794.	3.3	167
60	Oxidation reactions catalyzed by osmium compounds. Part 4. Highly efficient oxidation of hydrocarbons and alcohols including glycerol by the H2O2/Os3(CO)12/pyridine reagent. RSC Advances, 2013, 3, 15065.	3.6	28
61	Oxygenation of saturated and aromatic hydrocarbons with H2O2 catalysed by the carbonyl thiophenolate iron complex (OC)3Fe(PhS)2Fe(CO)3. Catalysis Today, 2013, 218-219, 93-98.	4.4	15
62	Binuclear Cageâ€Like Copper(II) Silsesquioxane ("Cooling Towerâ€) – Its High Catalytic Activity in the Oxidation of Benzene and Alcohols. European Journal of Inorganic Chemistry, 2013, 2013, 5240-5246.	2.0	53
63	Pyrazinecarboxylic acid and analogs: Highly efficient co-catalysts in the metal-complex-catalyzed oxidation of organic compounds. Coordination Chemistry Reviews, 2013, 257, 732-754.	18.8	138
64	Mild oxidative alkane functionalization with peroxides in the presence of ferrocene. Catalysis Communications, 2013, 31, 32-36.	3.3	31
65	A new binuclear oxovanadium(v) complex as a catalyst in combination with pyrazinecarboxylic acid (PCA) for efficient alkane oxygenation by H2O2. Dalton Transactions, 2013, 42, 11791.	3.3	73
66	Generation of HO [•] Radical from Hydrogen Peroxide Catalyzed by Aqua Complexes of the Group III Metals [M(H ₂ 0) _{<i>n</i>}] ³⁺ (M = Ga, In, Sc, Y, or La): A Theoretical Study. ACS Catalysis, 2013, 3, 1195-1208.	11.2	76
67	Oxidations by the system â€~hydrogen peroxide–[Mn2L2O3]2+ (L =) Tj ETQq1 1 0.784314 rgBT /Overlock 10	Tf 50 262	Td (1,4,7-trin
68	Hydrocarbon oxygenation with Oxone catalyzed by complex [Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-triazacyclononane) and oxalic acid. Tetrahedron, 2012, 68, 8589-8599.	1.9	14
69	Oxidation of isoeugenol to vanillin by the "H2O2–vanadate–pyrazine-2-carboxylic acid―reagent. Journal of Molecular Catalysis A, 2012, 363-364, 140-147.	4.8	49
70	Heterometallic Co ^{III} ₄ Fe ^{III} ₂ Schiff Base Complex: Structure, Electron Paramagnetic Resonance, and Alkane Oxidation Catalytic Activity. Inorganic Chemistry, 2012, 51, 9110-9122.	4.0	126
71	Participation of Oligovanadates in Alkane Oxidation with H ₂ O ₂ Catalyzed by Vanadate Anion in Acidified Acetonitrile: Kinetic and DFT Studies. ACS Catalysis, 2011, 1, 1511-1520.	11.2	98
72	Mechanism of Al ³⁺ -Catalyzed Oxidations of Hydrocarbons: Dramatic Activation of H ₂ O ₂ toward Oâ ^{^*} O Homolysis in Complex [Al(H ₂ O) ₄ (OOH)(H ₂ O ₂)] ²⁺ Explains the Formation of HO [•] Radicals. Inorganic Chemistry, 2011, 50, 3996-4005.	4.0	63

#	Article	IF	CITATIONS
73	Mild oxidative functionalization of alkanes and alcohols catalyzed by new mono- and dicopper(II) aminopolyalcoholates. Journal of Molecular Catalysis A, 2011, 350, 26-34.	4.8	72
74	Decamethylosmocene-catalyzed efficient oxidation of saturated and aromatic hydrocarbons and alcohols with hydrogen peroxide in the presence of pyridineart. Journal of Catalysis, 2011, 277, 164-172.	6.2	40
75	Oxidation of Reactive Alcohols with Hydrogen Peroxide Catalyzed by Manganese Complexes. Catalysis Letters, 2010, 138, 193-204.	2.6	45
76	Mild homogeneous oxidation of alkanes and alcohols including glycerol with tert-butyl hydroperoxide catalyzed by a tetracopper(II) complex. Journal of Catalysis, 2010, 272, 9-17.	6.2	85
77	Oxidation of alkanes and alcohols with hydrogen peroxide catalyzed by complex Os ₃ (CO) ₁₀ (µâ€H) ₂ . Applied Organometallic Chemistry, 2010, 24, 464-472.	3.5	48
78	Selectivity enhancement in functionalization of C–H bonds: A review. Organic and Biomolecular Chemistry, 2010, 8, 4217.	2.8	198
79	Mechanism of oxidations with H2O2 catalyzed by vanadate anion or oxovanadium(V) triethanolaminate (vanadatrane) in combination with pyrazine-2-carboxylic acid (PCA): Kinetic and DFT studies. Journal of Catalysis, 2009, 267, 140-157.	6.2	150
80	Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: Promoting effects of acid co-catalysts and water, kinetic and mechanistic features. Journal of Catalysis, 2009, 268, 26-38.	6.2	131
81	Hydrogen Peroxide Oxygenation of Saturated and Unsaturated Hydrocarbons Catalyzed by Montmorillonite or Aluminum Oxide. Catalysis Letters, 2009, 132, 235-243.	2.6	27
82	Oxidations by the system â€~hydrogen peroxide–[Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-triazacyclononane)–oxalic acid'. Part 11. Degradation of dye Rhodamine 6G and oxygenation of cyclohexene. Journal of Molecular Catalysis A, 2009, 299, 77-87.	4.8	36
83	Alkane oxidation by the H2O2–NaVO3–H2SO4 system in acetonitrile and water. Tetrahedron, 2009, 65, 2424-2429.	1.9	76
84	Oxidation of alkanes and olefins with hydrogen peroxide in acetonitrile solution catalyzed by a mesoporous titanium-silicate Ti-MMM-2. Applied Catalysis A: General, 2009, 365, 96-104.	4.3	42
85	Extremely Efficient Alkane Oxidation by a New Catalytic Reagent H ₂ O ₂ /Os ₃ (CO) ₁₂ /Pyridine. Inorganic Chemistry, 2009, 48, 10480-10482.	4.0	130
86	Oxidation of Saturated Hydrocarbons to Alkyl Hydroperoxides by a â€~H2O2/Titanosilicalite-1/NaOH/MeCN' System. Catalysis Letters, 2008, 123, 135-141.	2.6	22
87	Alkane oxidation by the system â€~ <i>tert</i> â€butyl hydroperoxideâ€"[Mn ₂ L ₂ O ₃][PF ₆] ₂ (L = 1,4,7â€trimethylâ€1,4,7â€triazacyclononane)â€"carboxylic acid'. Journal of Physical Organic Ch 2008, 21, 119-126.	1.9 nemistry,	39
88	Oxygenation of aromatic hydrocarbons with hydrogen peroxide catalyzed by rhodium carbonyl complexes. Applied Organometallic Chemistry, 2008, 22, 684-688.	3.5	10
89	Oxidations by the system â€~hydrogen peroxide–[Mn2L2O3][PF6]2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane)–carboxylic acid'. Part 10: Co-catalytic effect of different carboxylic acids in the oxidation of cyclohexane, cyclohexanol, and acetone. Tetrahedron, 2008, 64, 2143-2152.	1.9	91
90	Hydroperoxidation of alkanes with hydrogen peroxide catalyzed by aluminium nitrate in acetonitrile. Tetrahedron Letters, 2008, 49, 6693-6697.	1.4	57

#	Article	IF	CITATIONS
91	Dinuclear Manganese Complexes Containing Chiral 1,4,7-Triazacyclononane-Derived Ligands and Their Catalytic Potential for the Oxidation of Olefins, Alkanes, and Alcohols. Inorganic Chemistry, 2007, 46, 1315-1331.	4.0	92
92	Oxidation of 2-Propanol and Cyclohexane by the Reagent "Hydrogen Peroxideâ^'Vanadate Anion⒒Pyrazine-2-carboxylic Acid   Kinetics and Mechanism. Journal of Physical Chemistry A, 2007, 111, 7736-7752.	2.5	106
93	Synthesis, Molecular Structure, and Catalytic Potential of the Tetrairon Complex [Fe4(N3O2-L)4(μ-O)2]4+(L = 1-Carboxymethyl-4,7-dimethyl-1,4,7-triazacyclononane). Inorganic Chemistry, 2007, 46, 3166-3175.	4.0	74
94	Oxidation of hydrocarbons with hydrogen peroxide catalyzed by maltolato vanadium complexes covalently bonded to silica gel. Catalysis Communications, 2007, 8, 1516-1520.	3.3	51
95	A unique rate-accelerating effect of certain amino acids in the H2O2 oxidation of alkanes catalyzed by a dinuclear manganese complex containing 1,4,7-trimethyl-1,4,7-triazacyclononane. Tetrahedron, 2007, 63, 7997-8001.	1.9	40
96	Peroxyacetic Acid Oxidation of Olefins and Alkanes Catalyzed by a Dinuclear Manganese(IV) Complex with 1,4,7-trimethyl-1,4,7-triazacyclononane. Catalysis Letters, 2007, 118, 22-29.	2.6	24
97	Dinuclear manganese complexes containing 1,4-dimethyl-1,4,7-triazacyclononane ligands as well as carboxylato and oxo bridges. Inorganica Chimica Acta, 2006, 359, 1619-1626.	2.4	22
98	Dinuclear iron, ruthenium and cobalt complexes containing 1,4-dimethyl-1,4,7-triazacyclononane ligands as well as carboxylato and oxo or hydroxo bridges. Inorganica Chimica Acta, 2006, 359, 3297-3305.	2.4	14
99	Regioselective alkane oxygenation with H2O2 catalyzed by titanosilicalite TS-1. Tetrahedron Letters, 2006, 47, 3071-3075.	1.4	52
100	Highly efficient oxidation of alcohols by the system "hydrogen peroxide-[lmn(o)3mnl](pf6)2 (l =) Tj ETQq0 88, 339-348.	0 0 rgBT /(0.6	Overlock 10 27
101	Oxidation of alcohols with hydrogen peroxide catalyzed by soluble iron and osmium derivativesÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 157-163.	0.6	26
102	Carvone epoxidation by system $\hat{a} \in \hat{a}$ whydrogen peroxide-[Mn2L2O3][PF6]2 (L =) Tj ETQq0 0 0 rgBT /Overlock 10 optimizationÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 165-173.	Tf 50 307 0.6	Td (1,4,7-trin 18
103	Oxidations catalyzed by osmium compounds. Part 1: Efficient alkane oxidation with peroxides catalyzed by an olefin carbonyl osmium(0) complex. Journal of Organometallic Chemistry, 2006, 691, 837-845.	1.8	49
104	Oxidations by the system "hydrogen peroxide–[Mn2L2O3][PF6]2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane)–oxalic acid― Part 6. Oxidation of methane and other alkanes and olefins in water. Journal of Organometallic Chemistry, 2005, 690, 4498-4504.	1.8	52
105	Oxidations by the reagent "O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid― Journal of Molecular Catalysis A, 2005, 227, 247-253.	4.8	72
106	Alkane oxygenation with H2O2 catalysed by FeCl3 and 2,2′-bipyridine. Tetrahedron Letters, 2005, 46, 4563-4567.	1.4	47
107	Oxidations by the system "hydrogen peroxide–dinuclear manganese(IV) complex–carboxylic acid― Journal of Molecular Catalysis A, 2004, 222, 103-119.	4.8	15
108	Mono and oligonuclear vanadium complexes as catalysts for alkane oxidation: synthesis, molecular structure, and catalytic potential. Inorganica Chimica Acta, 2004, 357, 475-484.	2.4	71

#	Article	IF	CITATIONS
109	Oxidation of saturated hydrocarbons with peroxyacetic acid catalyzed by vanadium complexes. Journal of Molecular Catalysis A, 2004, 218, 171-177.	4.8	49
110	Oxidation of alkanes with m-chloroperbenzoic acid catalyzed by iron(III) chloride and a polydentate amine. Journal of Molecular Catalysis A, 2004, 219, 255-264.	4.8	37
111	Metal-catalysed hydrocarbon oxidations. Comptes Rendus Chimie, 2003, 6, 163-178.	0.5	227
112	Aerobic hydroxylation of hydrocarbons catalysed by vanadate ion. Journal of Molecular Catalysis A, 2003, 197, 65-71.	4.8	34
113	Oxidations by the reagent "O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid― Part 13.For parts 1–12 see refs. 4(a)–(l), respectively. Kinetics and mechanism of the benzene hydroxylation. New Journal of Chemistry, 2003, 27, 634-638.	2.8	45
114	Kinetics and mechanism of alkane hydroperoxidation with tert-butyl hydroperoxide catalysed by a vanadate anion. Organic and Biomolecular Chemistry, 2003, 1, 2303.	2.8	26
115	Alkane hydroperoxidation with peroxides catalysed by copper complexes. Organic and Biomolecular Chemistry, 2003, 1, 3611.	2.8	84
116	Alkane Oxygenation with Hydrogen Peroxide Catalysed by Soluble Derivatives of Nickel and Platinum. Journal of Chemical Research, 2002, 2002, 351-353.	1.3	15
117	Oxidations by the "hydrogen peroxide–manganese(IV) complex–carboxylic acid―system. : Part 4. Efficient acid-base switching between catalase and oxygenase activities of a dinuclear manganese(IV) complex in the reaction with H2O2and an alkane. New Journal of Chemistry, 2002, 26, 1238-1245.	2.8	76
118	Metal-catalyzed hydrocarbon oxygenations in solutions: the dramatic role of additives: a review. Journal of Molecular Catalysis A, 2002, 189, 39-66.	4.8	471
119	Hydroperoxidation of methane and other alkanes with H2O2 catalyzed by a dinuclear iron complex and an amino acid. Tetrahedron, 2002, 58, 9231-9237.	1.9	87
120	Oxidations by the reagent "O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid'. Part 12. Ma features, kinetics and mechanism of alkane hydroperoxidationâ€. Perkin Transactions II RSC, 2001, , 1351-1371.	ain 1.1	195
121	Alkane oxygenation catalysed by gold complexes. Tetrahedron Letters, 2001, 42, 7253-7256.	1.4	82
122	Oxidations by the system "hydrogen peroxide–manganese(IV) complex–carboxylic acid― Journal of Molecular Catalysis A, 2001, 170, 17-34.	4.8	157
123	Alkane oxidation with hydrogen peroxide catalyzed homogeneously by vanadium-containing polyphosphomolybdates. Applied Catalysis A: General, 2001, 217, 111-117.	4.3	77
124	Oxidative functionalisation of ethane with hydrogen peroxide catalysed by chromic acid. Journal of Chemical Research, 2000, 2000, 576-577.	1.3	9
125	Catalytic functionalization of methane. Applied Organometallic Chemistry, 2000, 14, 623-628.	3.5	28
126	Oxygenation of alkanes with hydrogen peroxide catalysed by osmium complexes. Chemical Communications, 2000, , 1131-1132.	4.1	40

#	Article	IF	CITATIONS
127	Oxidations by the system "hydrogen peroxide - manganese(IV) complex - acetic acid―— Part II. Hydroperoxidation and hydroxylation of alkanes in acetonitrile. Tetrahedron, 1999, 55, 5345-5358.	1.9	129
128	Oxidative functionalisation of alkanes: synthesis, molecular structure and catalytic implications of anionic vanadium(V) oxo and peroxo complexes containing bidentate N,O ligands â€. Journal of the Chemical Society Dalton Transactions, 1999, , 3169-3175.	1.1	71
129	Efficient stereoselective oxygenation of alkanes by peroxyacetic acid or hydrogen peroxide and acetic acid catalysed by a manganese(IV) 1,4,7-trimethyl-1,4,7-triazacyclononane complex. Tetrahedron Letters, 1998, 39, 4909-4912.	1.4	119
130	Oxidations by the reagent `O2–H2O2 – vanadate anion – pyrazine-2-carboxylic acid' Journal of Molecular Catalysis A, 1998, 130, 163-170.	4.8	76
131	Carboxylation of methane with CO or CO2 in aqueous solution catalysed by vanadium complexes. Chemical Communications, 1998, , 1885-1886.	4.1	79
132	Catalytic oxidation of methane to methyl hydroperoxide and other oxygenates under mild conditions. Chemical Communications, 1997, , 397-398.	4.1	74
133	Oxidations by the reagent «O2 - H2O2 - vanadium complex - pyrazine-2-carboxylic acidå-8. Tetrahedron, 1997, 53, 3603-3614.	1.9	71
134	Aerobic photodegradation of phenols in aqueous solutions promoted by metal compounds. Applied Catalysis B: Environmental, 1997, 12, 1-19.	20.2	10
135	Activation of Câ^H Bonds by Metal Complexes. Chemical Reviews, 1997, 97, 2879-2932.	47.7	2,713
136	Oxidations by the reagent O2 - H2O2 - vanadium complex - pyrazine-2-carboxylic acid Part 7. Hydroperoxidation of higher alkanes. Tetrahedron, 1996, 52, 13051-13062.	1.9	82
137	Methyltrioxorhenium catalyzed oxidation of saturated and aromatic hydrocarbons by H2O2 in air. Tetrahedron Letters, 1996, 37, 6487-6490.	1.4	76
138	Selective Photochemical Ketonization of Cyclohexane by Air in an Aqueous Emulsion in the Presence of Iron Ions. Mendeleev Communications, 1995, 5, 143-145.	1.6	13
139	Oxidations by the reagent â€~H2O2–vanadium complex–pyrazine-2-carboxylic acid'. Part 4. Oxidation of alkanes, benzene and alcohols by an adduct of H2O2with urea. Journal of the Chemical Society Perkin Transactions II, 1995, , 1459-1463.	0.9	79
140	Aerobic oxidation of saturated hydrocarbons into alkyl hydroperoxides induced by visible light and catalysed by a â€~quinone–copper acetate' system. Journal of the Chemical Society Perkin Transactions II, 1995, , 1465-1469.	0.9	46
141	Aerobic photooxidation and C–C bond cleavage of the acetylacetonate ligand in (2-arylazo)arylpalladium(II) complexes induced by visible light. Journal of the Chemical Society Dalton Transactions, 1994, , 1505-1509.	1.1	14
142	Iron(III) Chloride Catalysed Photooxygenation of Alcohol Solutions of Alkanes by Atmospheric Oxygen. Mendeleev Communications, 1992, 2, 36-37.	1.6	24
143	Formation of alkyl peroxides in oxidation of alkanes by H2O2 catalyzed by transition metal complexes. Reaction Kinetics and Catalysis Letters, 1992, 48, 333-338.	0.6	110
144	Hydroperoxidation of alkanes by atmospheric oxygen in the presence of hydroquinone or quinone catalyzed by copper(II) acetate under visible light irradiation. Reaction Kinetics and Catalysis Letters, 1992, 47, 207-211.	0.6	65

#	Article	IF	CITATIONS
145	Cyclohexane photooxygenation by air oxygen in CH2Cl2 in the presence of chromium oxocomplex-iodosylbenzene system. Reaction Kinetics and Catalysis Letters, 1991, 45, 173-178.	0.6	7
146	Molybdenum hexacarbonyl catalyzed photooxygenation of cyclohexane by air dioxygen in acetonitrile solution. Reaction Kinetics and Catalysis Letters, 1991, 44, 387-391.	0.6	8
147	Ferric chloride catalyzed photooxidation of alkanes by air in organic solvents. Reaction Kinetics and Catalysis Letters, 1990, 41, 239-243.	0.6	43
148	Activation of the C–H bond by metal complexes. Russian Chemical Reviews, 1990, 59, 853-866.	6.5	39
149	Activation and Catalytic Reactions of Alkanes in Solutions of Metal Complexes. Russian Chemical Reviews, 1987, 56, 442-464.	6.5	107
150	Formation of organometallic complexes of platinum(II) and platinum(IV) in reactions of PtCl62â^' with alkanes, olefins and aromatics induced by Î ³ -irradiation. Journal of Organometallic Chemistry, 1984, 265, c12-c14.	1.8	10
151	Photoinduced reactions of PtCl62–with saturated hydrocarbons and other C–H containing compounds. Journal of the Chemical Society Chemical Communications, 1983, , 671-672.	2.0	29
152	Interaction of HAuCl4 with aromatic compounds in protic media formation of i_{f} -aryl complexes of gold. Reaction Kinetics and Catalysis Letters, 1982, 20, 69-71.	0.6	2
153	Diastereotopy in Transition Metal Complexes. Russian Chemical Reviews, 1980, 49, 645-654.	6.5	5
154	Ferrocenophanes. Russian Chemical Reviews, 1974, 43, 716-732.	6.5	29