Georgiy B Shul'pin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4680301/publications.pdf

Version: 2024-02-01

154 papers

10,821 citations

52 h-index 100 g-index

164 all docs

164 docs citations

times ranked

164

5771 citing authors

#	Article	IF	CITATIONS
1	Activation of Câ^'H Bonds by Metal Complexes. Chemical Reviews, 1997, 97, 2879-2932.	47.7	2,713
2	Metal-catalyzed hydrocarbon oxygenations in solutions: the dramatic role of additives: a review. Journal of Molecular Catalysis A, 2002, 189, 39-66.	4.8	471
3	Metal-catalysed hydrocarbon oxidations. Comptes Rendus Chimie, 2003, 6, 163-178.	0.5	227
4	Selectivity enhancement in functionalization of C–H bonds: A review. Organic and Biomolecular Chemistry, 2010, 8, 4217.	2.8	198
5	Oxidations by the reagent "O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid'. Part 12. Ma features, kinetics and mechanism of alkane hydroperoxidationâ€. Perkin Transactions II RSC, 2001, , 1351-1371.	ain 1.1	195
6	C–H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity. Dalton Transactions, 2013, 42, 12794.	3.3	167
7	New Trends in Oxidative Functionalization of Carbon–Hydrogen Bonds: A Review. Catalysts, 2016, 6, 50.	3.5	167
8	Oxidations by the system "hydrogen peroxide–manganese(IV) complex–carboxylic acid― Journal of Molecular Catalysis A, 2001, 170, 17-34.	4.8	157
9	Mechanism of oxidations with H2O2 catalyzed by vanadate anion or oxovanadium(V) triethanolaminate (vanadatrane) in combination with pyrazine-2-carboxylic acid (PCA): Kinetic and DFT studies. Journal of Catalysis, 2009, 267, 140-157.	6.2	150
10	Pyrazinecarboxylic acid and analogs: Highly efficient co-catalysts in the metal-complex-catalyzed oxidation of organic compounds. Coordination Chemistry Reviews, 2013, 257, 732-754.	18.8	138
11	Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: Promoting effects of acid co-catalysts and water, kinetic and mechanistic features. Journal of Catalysis, 2009, 268, 26-38.	6.2	131
12	Extremely Efficient Alkane Oxidation by a New Catalytic Reagent H ₂ O ₂ /Ososub>3(CO) ₁₂ /Pyridine. Inorganic Chemistry, 2009, 48, 10480-10482.	4.0	130
13	Oxidations by the system "hydrogen peroxide - manganese(IV) complex - acetic acid―— Part II. Hydroperoxidation and hydroxylation of alkanes in acetonitrile. Tetrahedron, 1999, 55, 5345-5358.	1.9	129
14	Heterometallic Co ^{III} ₄ Fe ^{III} ₂ Schiff Base Complex: Structure, Electron Paramagnetic Resonance, and Alkane Oxidation Catalytic Activity. Inorganic Chemistry, 2012, 51, 9110-9122.	4.0	126
15	Efficient stereoselective oxygenation of alkanes by peroxyacetic acid or hydrogen peroxide and acetic acid catalysed by a manganese(IV) 1,4,7-trimethyl-1,4,7-triazacyclononane complex. Tetrahedron Letters, 1998, 39, 4909-4912.	1.4	119
16	Formation of alkyl peroxides in oxidation of alkanes by H2O2 catalyzed by transition metal complexes. Reaction Kinetics and Catalysis Letters, 1992, 48, 333-338.	0.6	110
17	Activation and Catalytic Reactions of Alkanes in Solutions of Metal Complexes. Russian Chemical Reviews, 1987, 56, 442-464.	6.5	107
18	Oxidation of 2-Propanol and Cyclohexane by the Reagent "Hydrogen Peroxideâ^'Vanadate Anionâ^'Pyrazine-2-carboxylic Acid―  Kinetics and Mechanism. Journal of Physical Chemistry A, 2007, 111, 7736-7752.	2.5	106

#	Article	IF	CITATIONS
19	Participation of Oligovanadates in Alkane Oxidation with H ₂ O ₂ Catalyzed by Vanadate Anion in Acidified Acetonitrile: Kinetic and DFT Studies. ACS Catalysis, 2011, 1, 1511-1520.	11.2	98
20	Dinuclear Manganese Complexes Containing Chiral 1,4,7-Triazacyclononane-Derived Ligands and Their Catalytic Potential for the Oxidation of Olefins, Alkanes, and Alcohols. Inorganic Chemistry, 2007, 46, 1315-1331.	4.0	92
21	Oxidations by the system †hydrogen peroxide†[Mn2L2O3] [PF6]2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane)†carboxylic acid†. Part 10: Co-catalytic effect of different carboxylic acids in the oxidation of cyclohexane, cyclohexanol, and acetone. Tetrahedron, 2008, 64, 2143-2152.	1.9	91
22	Hydroperoxidation of methane and other alkanes with H2O2 catalyzed by a dinuclear iron complex and an amino acid. Tetrahedron, 2002, 58, 9231-9237.	1.9	87
23	Mild homogeneous oxidation of alkanes and alcohols including glycerol with tert-butyl hydroperoxide catalyzed by a tetracopper(II) complex. Journal of Catalysis, 2010, 272, 9-17.	6.2	85
24	Alkane hydroperoxidation with peroxides catalysed by copper complexes. Organic and Biomolecular Chemistry, 2003, 1, 3611.	2.8	84
25	Oxidations by the reagent O2 - H2O2 - vanadium complex - pyrazine-2-carboxylic acid Part 7. Hydroperoxidation of higher alkanes. Tetrahedron, 1996, 52, 13051-13062.	1.9	82
26	Alkane oxygenation catalysed by gold complexes. Tetrahedron Letters, 2001, 42, 7253-7256.	1.4	82
27	Oxidations by the reagent †H2O2†vanadium complex†pyrazine-2-carboxylic acidâ€. Part 4. Oxidation of alkanes, benzene and alcohols by an adduct of H2O2 with urea. Journal of the Chemical Society Perkin Transactions II, 1995, , 1459-1463.	0.9	79
28	Carboxylation of methane with CO or CO2 in aqueous solution catalysed by vanadium complexes. Chemical Communications, 1998, , 1885-1886.	4.1	79
29	Alkane oxidation with hydrogen peroxide catalyzed homogeneously by vanadium-containing polyphosphomolybdates. Applied Catalysis A: General, 2001, 217, 111-117.	4.3	77
30	Methyltrioxorhenium catalyzed oxidation of saturated and aromatic hydrocarbons by H2O2 in air. Tetrahedron Letters, 1996, 37, 6487-6490.	1.4	76
31	Oxidations by the reagent `O2–H2O2 – vanadate anion – pyrazine-2-carboxylic acid' Journal of Molecular Catalysis A, 1998, 130, 163-170.	4.8	76
32	Oxidations by the "hydrogen peroxide–manganese(IV) complex–carboxylic acid―system.: Part 4. Efficient acid-base switching between catalase and oxygenase activities of a dinuclear manganese(IV) complex in the reaction with H2O2and an alkane. New Journal of Chemistry, 2002, 26, 1238-1245.	2.8	76
33	Alkane oxidation by the H2O2–NaVO3–H2SO4 system in acetonitrile and water. Tetrahedron, 2009, 65, 2424-2429.	1.9	76
34	Generation of HO [•] Radical from Hydrogen Peroxide Catalyzed by Aqua Complexes of the Group III Metals [M(H ₂ O) _{<i>n</i>}] ³⁺ (M = Ga, In, Sc, Y, or La): A Theoretical Study. ACS Catalysis, 2013, 3, 1195-1208.	11.2	76
35	Catalytic oxidation of methane to methyl hydroperoxide and other oxygenates under mild conditions. Chemical Communications, 1997, , 397-398.	4.1	74
36	Synthesis, Molecular Structure, and Catalytic Potential of the Tetrairon Complex [Fe4(N3O2-L)4($\hat{l}^{1}/4$ -O)2]4+(L = 1-Carboxymethyl-4,7-dimethyl-1,4,7-triazacyclononane). Inorganic Chemistry, 2007, 46, 3166-3175.	4.0	74

#	Article	IF	CITATIONS
37	A new binuclear oxovanadium(v) complex as a catalyst in combination with pyrazinecarboxylic acid (PCA) for efficient alkane oxygenation by H2O2. Dalton Transactions, 2013, 42, 11791.	3.3	73
38	Oxidations by the reagent "O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid― Journal of Molecular Catalysis A, 2005, 227, 247-253.	4.8	72
39	Mild oxidative functionalization of alkanes and alcohols catalyzed by new mono- and dicopper(II) aminopolyalcoholates. Journal of Molecular Catalysis A, 2011, 350, 26-34.	4.8	72
40	Oxidations by the reagent «O2 - H2O2 - vanadium complex - pyrazine-2-carboxylic acidå-8. Tetrahedron, 1997, 53, 3603-3614.	1.9	71
41	Oxidative functionalisation of alkanes: synthesis, molecular structure and catalytic implications of anionic vanadium(V) oxo and peroxo complexes containing bidentate N,O ligands â€. Journal of the Chemical Society Dalton Transactions, 1999, , 3169-3175.	1.1	71
42	Mono and oligonuclear vanadium complexes as catalysts for alkane oxidation: synthesis, molecular structure, and catalytic potential. Inorganica Chimica Acta, 2004, 357, 475-484.	2.4	71
43	Solvent-controlled synthesis of tetranuclear cage-like copper(<scp>ii</scp>) silsesquioxanes. Remarkable features of the cage structures and their high catalytic activity in oxidation with peroxides. Dalton Transactions, 2014, 43, 872-882.	3.3	69
44	Copper(<scp>ii</scp>) complexes of functionalized 2,2′:6′,2′.erpyridines and 2,6-di(thiazol-2-yl)pyrid structure, spectroscopy, cytotoxicity and catalytic activity. Dalton Transactions, 2017, 46, 9591-9604.	line;	69
45	Hydroperoxidation of alkanes by atmospheric oxygen in the presence of hydroquinone or quinone catalyzed by copper(II) acetate under visible light irradiation. Reaction Kinetics and Catalysis Letters, 1992, 47, 207-211.	0.6	65
46	Cageâ€ike Copper(II) Silsesquioxanes: Transmetalation Reactions and Structural, Quantum Chemical, and Catalytic Studies. Chemistry - A European Journal, 2015, 21, 8758-8770.	3.3	65
47	Mechanism of Al ³⁺ -Catalyzed Oxidations of Hydrocarbons: Dramatic Activation of H ₂ O ₂ toward Oâ^O Homolysis in Complex [Al(H ₂ O) ₄ (OOH)(H ₂ O ₂)] ²⁺ Explains the Formation of HO [•] Radicals. Inorganic Chemistry, 2011, 50, 3996-4005.	4.0	63
48	Hydroperoxidation of alkanes with hydrogen peroxide catalyzed by aluminium nitrate in acetonitrile. Tetrahedron Letters, 2008, 49, 6693-6697.	1.4	57
49	Oxidation of olefins with H ₂ O ₂ catalysed by salts of group III metals (Ga, In,) Tj ETQq1 1343-1356.	0.78431 4.1	4 rgBT /Ove 57
50	A hydroperoxo-rebound mechanism of alkane oxidation with hydrogen peroxide catalyzed by binuclear manganese(IV) complex in the presence of an acid with involvement of atmospheric dioxygen. Inorganica Chimica Acta, 2017, 455, 666-676.	2.4	56
51	Unusual Tri-, Hexa-, and Nonanuclear Cu(II) Cage Methylsilsesquioxanes: Synthesis, Structures, and Catalytic Activity in Oxidations with Peroxides. Inorganic Chemistry, 2017, 56, 4093-4103.	4.0	54
52	Binuclear Cageâ€Like Copper(II) Silsesquioxane ("Cooling Towerâ€) – Its High Catalytic Activity in the Oxidation of Benzene and Alcohols. European Journal of Inorganic Chemistry, 2013, 2013, 5240-5246.	2.0	53
53	A heterometallic (Fe ₆ Na ₈) cage-like silsesquioxane: synthesis, structure, spin glass behavior and high catalytic activity. RSC Advances, 2016, 6, 48165-48180.	3.6	53
54	Oxidations by the system "hydrogen peroxide–[Mn2L2O3][PF6]2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane)–oxalic acid― Part 6. Oxidation of methane and other alkanes and olefins in water. Journal of Organometallic Chemistry, 2005, 690, 4498-4504.	1.8	52

#	Article	IF	CITATIONS
55	Regioselective alkane oxygenation with H2O2 catalyzed by titanosilicalite TS-1. Tetrahedron Letters, 2006, 47, 3071-3075.	1.4	52
56	Oxidation of C-H compounds with peroxides catalyzed by polynuclear transition metal complexes in Sior Ge-sesquioxane frameworks: AÂreview. Journal of Organometallic Chemistry, 2017, 849-850, 201-218.	1.8	52
57	Oxidation of hydrocarbons with hydrogen peroxide catalyzed by maltolato vanadium complexes covalently bonded to silica gel. Catalysis Communications, 2007, 8, 1516-1520.	3.3	51
58	High Catalytic Activity of Vanadium Complexes in Alkane Oxidations with Hydrogen Peroxide: An Effect of 8-Hydroxyquinoline Derivatives as Noninnocent Ligands. Inorganic Chemistry, 2018, 57, 1824-1839.	4.0	51
59	Limonene epoxidation with H2O2 promoted by Al2O3: Kinetic study, experimental design. Journal of Catalysis, 2014, 319, 71-86.	6.2	50
60	Oxidation of saturated hydrocarbons with peroxyacetic acid catalyzed by vanadium complexes. Journal of Molecular Catalysis A, 2004, 218, 171-177.	4.8	49
61	Oxidations catalyzed by osmium compounds. Part 1: Efficient alkane oxidation with peroxides catalyzed by an olefin carbonyl osmium(0) complex. Journal of Organometallic Chemistry, 2006, 691, 837-845.	1.8	49
62	Oxidation of isoeugenol to vanillin by the "H2O2–vanadate–pyrazine-2-carboxylic acid―reagent. Journal of Molecular Catalysis A, 2012, 363-364, 140-147.	4.8	49
63	Oxidation of alkanes and alcohols with hydrogen peroxide catalyzed by complex Os ₃ (CO) ₁₀ (µâ€H) ₂ . Applied Organometallic Chemistry, 2010, 24, 464-472.	3.5	48
64	Alkane oxygenation with H2O2 catalysed by FeCl3 and 2,2′-bipyridine. Tetrahedron Letters, 2005, 46, 4563-4567.	1.4	47
65	Radical decomposition of hydrogen peroxide catalyzed by aqua complexes [M(H2O)]2+ (M = Be, Zn, Cd). Journal of Catalysis, 2014, 313, 135-148.	6.2	47
66	Aerobic oxidation of saturated hydrocarbons into alkyl hydroperoxides induced by visible light and catalysed by a †quinone†copper acetate†system. Journal of the Chemical Society Perkin Transactions II, 1995, , 1465-1469.	0.9	46
67	Alkane oxidation with peroxides catalyzed by cage-like copper(<scp>ii</scp>) silsesquioxanes. New Journal of Chemistry, 2015, 39, 187-199.	2.8	46
68	Oxidations by the reagent "O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid― Part 13.For parts 1–12 see refs. 4(a)–(l), respectively. Kinetics and mechanism of the benzene hydroxylation. New Journal of Chemistry, 2003, 27, 634-638.	2.8	45
69	Oxidation of Reactive Alcohols with Hydrogen Peroxide Catalyzed by Manganese Complexes. Catalysis Letters, 2010, 138, 193-204.	2.6	45
70	Copper(<scp>ii</scp>) complexes with 2,2′:6′,2′′-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine substituted with quinolines. Synthesis, structure, antiproliferative activity, and catalytic activity in the oxidation of alkanes and alcohols with peroxides. Dalton Transactions, 2019, 48, 12656-12673.	3.3	44
71	Ferric chloride catalyzed photooxidation of alkanes by air in organic solvents. Reaction Kinetics and Catalysis Letters, 1990, 41, 239-243.	0.6	43
72	Oxidation of alkanes and olefins with hydrogen peroxide in acetonitrile solution catalyzed by a mesoporous titanium-silicate Ti-MMM-2. Applied Catalysis A: General, 2009, 365, 96-104.	4.3	42

#	Article	IF	Citations
73	New oxidovanadium(<scp>iv</scp>) complex with a BIAN ligand: synthesis, structure, redox properties and catalytic activity. New Journal of Chemistry, 2018, 42, 16200-16210.	2.8	42
74	Cyclopentadienyl cobalt(III) complexes: Synthetic and catalytic chemistry. Coordination Chemistry Reviews, 2019, 387, 1-31.	18.8	41
75	Oxygenation of alkanes with hydrogen peroxide catalysed by osmium complexes. Chemical Communications, 2000, , 1131-1132.	4.1	40
76	A unique rate-accelerating effect of certain amino acids in the H2O2 oxidation of alkanes catalyzed by a dinuclear manganese complex containing $1,4,7$ -trimethyl- $1,4,7$ -triazacyclononane. Tetrahedron, 2007, 63, 7997-8001.	1.9	40
77	Decamethylosmocene-catalyzed efficient oxidation of saturated and aromatic hydrocarbons and alcohols with hydrogen peroxide in the presence of pyridinea †. Journal of Catalysis, 2011, 277, 164-172.	6.2	40
78	Oxidation of Olefins with Hydrogen Peroxide Catalyzed by Bismuth Salts: A Mechanistic Study. ACS Catalysis, 2015, 5, 3823-3835.	11.2	40
79	High-Cluster (Cu ₉) Cage Silsesquioxanes: Synthesis, Structure, and Catalytic Activity. Inorganic Chemistry, 2018, 57, 11524-11529.	4.0	40
80	Activation of the C–H bond by metal complexes. Russian Chemical Reviews, 1990, 59, 853-866.	6.5	39
81	Alkane oxidation by the system â€~ <i>tert</i> â€butyl hydroperoxide–[Mn ₂ L ₂ O ₃][PF ₆] ₂ (L = 1,4,7â€trimethylâ€1,4,7â€triazacyclononane)–carboxylic acid'. Journal of Physical Organic Che 2008, 21, 119-126.	1.9 emistry,	39
82	Oxidation of hydrocarbons with H ₂ O ₂ /O ₂ catalyzed by osmium complexes containing p-cymene ligands in acetonitrile. Catalysis Science and Technology, 2014, 4, 3214-3226.	4.1	38
83	Oxidation of alkanes with m-chloroperbenzoic acid catalyzed by iron(III) chloride and a polydentate amine. Journal of Molecular Catalysis A, 2004, 219, 255-264.	4.8	37
84	High Catalytic Activity of Heterometallic (Fe6Na7 and Fe6Na6) Cage Silsesquioxanes in Oxidations with Peroxides. Catalysts, 2017, 7, 101.	3.5	37
85	Oxidations by the system †hydrogen peroxide†[Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-triazacyclononane)†oxalic acid†. Part 11. Degradation of dye Rhodamine 6G and oxygenation of cyclohexene. Journal of Molecular Catalysis A, 2009, 299, 77-87.	4.8	36
86	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 15360-15363.	13.8	36
87	Si ₁₀ Cu ₆ N ₄ Cage Hexacoppersilsesquioxanes Containing N Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorganic Chemistry, 2017, 56, 15026-15040.	4.0	36
88	Aerobic hydroxylation of hydrocarbons catalysed by vanadate ion. Journal of Molecular Catalysis A, 2003, 197, 65-71.	4.8	34
89	Stable organoplatinum complexes as intermediates and models inÂhydrocarbon functionalization. Journal of Organometallic Chemistry, 2015, 793, 4-16.	1.8	33
90	Ionic Complexes of Tetra―and Nonanuclear Cage Copper(II) Phenylsilsesquioxanes: Synthesis and High Activity in Oxidative Catalysis. ChemCatChem, 2017, 9, 4437-4447.	3.7	33

#	Article	IF	CITATIONS
91	Metal Complexes Containing Redox-Active Ligands in Oxidation of Hydrocarbons and Alcohols: A Review. Catalysts, 2019, 9, 1046.	3.5	33
92	Novel Cage-Like Hexanuclear Nickel(II) Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides. Molecules, 2016, 21, 665.	3.8	32
93	Mild oxidative alkane functionalization with peroxides in the presence of ferrocene. Catalysis Communications, 2013, 31, 32-36.	3.3	31
94	Mild and Regioselective Hydroxylation of Methyl Group in Neocuproine: Approach to an N,O-Ligated Cu ₆ Cage Phenylsilsesquioxane. Organometallics, 2018, 37, 168-171.	2.3	31
95	Ferrocenophanes. Russian Chemical Reviews, 1974, 43, 716-732.	6.5	29
96	Photoinduced reactions of PtCl62–with saturated hydrocarbons and other C–H containing compounds. Journal of the Chemical Society Chemical Communications, 1983, , 671-672.	2.0	29
97	Simple soluble Bi(<scp>iii</scp>) salts as efficient catalysts for the oxidation of alkanes with H ₂ O ₂ . Catalysis Science and Technology, 2015, 5, 2174-2187.	4.1	29
98	Stereoselective Alkane Oxidation with meta-Chloroperoxybenzoic Acid (MCPBA) Catalyzed by Organometallic Cobalt Complexes. Molecules, 2016, 21, 1593.	3.8	29
99	Catalytic functionalization of methane. Applied Organometallic Chemistry, 2000, 14, 623-628.	3.5	28
100	Oxidation reactions catalyzed by osmium compounds. Part 4. Highly efficient oxidation of hydrocarbons and alcohols including glycerol by the H2O2/Os3(CO)12/pyridine reagent. RSC Advances, 2013, 3, 15065.	3.6	28
101	Highly efficient oxidation of alcohols by the system $\alpha_{postering} = 10^{-10} \text{Highly efficient}$ As, 339-348.	0.78431 0.6	
102	Hydrogen Peroxide Oxygenation of Saturated and Unsaturated Hydrocarbons Catalyzed by Montmorillonite or Aluminum Oxide. Catalysis Letters, 2009, 132, 235-243.	2.6	27
103	Kinetics and mechanism of alkane hydroperoxidation with tert-butyl hydroperoxide catalysed by a vanadate anion. Organic and Biomolecular Chemistry, 2003, 1, 2303.	2.8	26
104	Oxidation of alcohols with hydrogen peroxide catalyzed by soluble iron and osmium derivativesÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 157-163.	0.6	26
105	Heptanuclear Cage Cu ^{II} â€Silsesquioxanes: Synthesis, Structure and Catalytic Activity. European Journal of Inorganic Chemistry, 2018, 2018, 2505-2511.	2.0	26
106	Novel Oxidovanadium Complexes with Redox-Active R-Mian and R-Bian Ligands: Synthesis, Structure, Redox and Catalytic Properties. Molecules, 2021, 26, 5706.	3.8	26
107	Oxidation of alkanes and benzene with hydrogen peroxide catalyzed by ferrocene in the presence of acids. Journal of Organometallic Chemistry, 2015, 793, 217-231.	1.8	25
108	Heptanuclear Fe ₅ Cu ₂ -Phenylgermsesquioxane containing 2,2′-Bipyridine: Synthesis, Structure, and Catalytic Activity in Oxidation of C–H Compounds. Inorganic Chemistry, 2018, 57, 528-534.	4.0	25

#	Article	IF	Citations
109	Iron(III) Chloride Catalysed Photooxygenation of Alcohol Solutions of Alkanes by Atmospheric Oxygen. Mendeleev Communications, 1992, 2, 36-37.	1.6	24
110	Peroxyacetic Acid Oxidation of Olefins and Alkanes Catalyzed by a Dinuclear Manganese(IV) Complex with 1,4,7-trimethyl-1,4,7-triazacyclononane. Catalysis Letters, 2007, 118, 22-29.	2.6	24
111	New p-tolylimido rhenium(<scp>v</scp>) complexes with carboxylate-based ligands: synthesis, structures and their catalytic potential in oxidations with peroxides. Dalton Transactions, 2014, 43, 5759-5776.	3.3	24
112	New Oxidovanadium(IV) Complexes with 2,2′-bipyridine and 1,10-phenathroline Ligands: Synthesis, Structure and High Catalytic Activity in Oxidations of Alkanes and Alcohols with Peroxides. Catalysts, 2019, 9, 217.	3.5	24
113	Palanquin-Like Cu4Na4 Silsesquioxane Synthesis (via Oxidation of 1,1-bis(Diphenylphosphino)methane), Structure and Catalytic Activity in Alkane or Alcohol Oxidation with Peroxides. Catalysts, 2019, 9, 154.	3.5	24
114	Family of penta- and hexanuclear metallasilsesquioxanes: Synthesis, structure and catalytic properties in oxidations. Journal of Organometallic Chemistry, 2018, 867, 133-141.	1.8	23
115	Dinuclear manganese complexes containing 1,4-dimethyl-1,4,7-triazacyclononane ligands as well as carboxylato and oxo bridges. Inorganica Chimica Acta, 2006, 359, 1619-1626.	2.4	22
116	Oxidation of Saturated Hydrocarbons to Alkyl Hydroperoxides by a â€~H2O2/Titanosilicalite-1/NaOH/MeCN' System. Catalysis Letters, 2008, 123, 135-141.	2.6	22
117	Oxidation of hydrocarbons and alcohols with peroxides catalyzed by new π-cymene osmium complexes. Journal of Organometallic Chemistry, 2015, 784, 52-61.	1.8	22
118	Coordination Affinity of Cu(II)-Based Silsesquioxanes toward N,N-Ligands and Associated Skeletal Rearrangements: Cage and Ionic Products Exhibiting a High Catalytic Activity in Oxidation Reactions. Inorganic Chemistry, 2020, 59, 4536-4545.	4.0	22
119	Hexacoppergermsesquioxanes as complexes with N-ligands: Synthesis, structure and catalytic properties. Journal of Organometallic Chemistry, 2019, 884, 17-28.	1.8	21
120	Carvone epoxidation by system "hydrogen peroxide-[Mn2L2O3][PF6]2 (L =) Tj ETQq0 0 0 rgBT /Overlock 10 optimizationÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 165-173.	Tf 50 307 0.6	Td (1,4,7-trir 18
121	A new "bicycle helmet―like copper(<scp>ii</scp>),sodiumphenylsilsesquioxane. Synthesis, structure and catalytic activity. Dalton Transactions, 2018, 47, 15666-15669.	3.3	18
122	Copper complexes with 1,10-phenanthrolines as efficient catalysts for oxidation of alkanes by hydrogen peroxide. Inorganica Chimica Acta, 2020, 512, 119889.	2.4	17
123	Oxidative functionalization of C–H compounds induced by the extremely efficient osmium catalysts (a) Tj ETQ	q1 _{4.1} 0.784	4314 rgBT /○
124	Oxidation of Organic Compounds with Peroxides Catalyzed by Polynuclear Metal Compounds. Catalysts, 2021, 11, 186.	3.5	16
125	Alkane Oxygenation with Hydrogen Peroxide Catalysed by Soluble Derivatives of Nickel and Platinum. Journal of Chemical Research, 2002, 2002, 351-353.	1.3	15
126	Oxidations by the system "hydrogen peroxide–dinuclear manganese(IV) complex–carboxylic acid― Journal of Molecular Catalysis A, 2004, 222, 103-119.	4.8	15

#	Article	IF	Citations
127	Oxygenation of saturated and aromatic hydrocarbons with H2O2 catalysed by the carbonyl thiophenolate iron complex (OC)3Fe(PhS)2Fe(CO)3. Catalysis Today, 2013, 218-219, 93-98.	4.4	15
128	Oxidation of hydroxyacetone (acetol) with hydrogen peroxide in acetonitrile solution catalyzed by iron(III) chloride. Journal of Molecular Catalysis A, 2016, 422, 103-114.	4.8	15
129	New Cu4Na4- and Cu5-Based Phenylsilsesquioxanes. Synthesis via Complexation with 1,10-Phenanthroline, Structures and High Catalytic Activity in Alkane Oxidations with Peroxides in Acetonitrile. Catalysts, 2019, 9, 701.	3.5	15
130	Aerobic photooxidation and C–C bond cleavage of the acetylacetonate ligand in (2-arylazo)arylpalladium(II) complexes induced by visible light. Journal of the Chemical Society Dalton Transactions, 1994, , 1505-1509.	1.1	14
131	Dinuclear iron, ruthenium and cobalt complexes containing 1,4-dimethyl-1,4,7-triazacyclononane ligands as well as carboxylato and oxo or hydroxo bridges. Inorganica Chimica Acta, 2006, 359, 3297-3305.	2.4	14
132	Hydrocarbon oxygenation with Oxone catalyzed by complex [Mn2L2O3]2+ (L=1,4,7-trimethyl-1,4,7-triazacyclononane) and oxalic acid. Tetrahedron, 2012, 68, 8589-8599.	1.9	14
133	Cu42Ge24Na4â€"A Giant Trimetallic Sesquioxane Cage: Synthesis, Structure, and Catalytic Activity. Catalysts, 2018, 8, 484.	3.5	14
134	Selective Photochemical Ketonization of Cyclohexane by Air in an Aqueous Emulsion in the Presence of Iron Ions. Mendeleev Communications, 1995, 5, 143-145.	1.6	13
135	Synthesis, structures and catalytic activity of p-tolylimido rhenium(V) complexes incorporating quinoline-derived ligands. Inorganica Chimica Acta, 2017, 455, 683-695.	2.4	12
136	Oxidations by the system †hydrogen peroxide†[Mn2L2O3]2+ (L =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 38.	2 Td (1,4,7	7-trimethyl-1, 11
137	Oxidation of olefins with H2O2 catalyzed by gallium(III) nitrate and aluminum(III) nitrate in solution. Journal of Molecular Catalysis A, 2016, 422, 216-220.	4.8	11
138	Exploring Cagelike Silsesquioxane Building Blocks for the Design of Heterometallic Cu ₄ /M ₄ Architectures. Crystal Growth and Design, 2022, 22, 2146-2157.	3.0	11
139	Formation of organometallic complexes of platinum(II) and platinum(IV) in reactions of PtCl62∠with alkanes, olefins and aromatics induced by γ-irradiation. Journal of Organometallic Chemistry, 1984, 265, c12-c14.	1.8	10
140	Aerobic photodegradation of phenols in aqueous solutions promoted by metal compounds. Applied Catalysis B: Environmental, 1997, 12, 1-19.	20.2	10
141	Oxygenation of aromatic hydrocarbons with hydrogen peroxide catalyzed by rhodium carbonyl complexes. Applied Organometallic Chemistry, 2008, 22, 684-688.	3.5	10
142	p-Tolylimido rhenium(<scp>v</scp>) complexes with phenolate-based ligands: synthesis, X-ray studies and catalytic activity in oxidation with tert-butylhydroperoxide. Dalton Transactions, 2016, 45, 334-351.	3.3	10
143	Oxidative functionalisation of ethane with hydrogen peroxide catalysed by chromic acid. Journal of Chemical Research, 2000, 2000, 576-577.	1.3	9
144	Molybdenum hexacarbonyl catalyzed photooxygenation of cyclohexane by air dioxygen in acetonitrile solution. Reaction Kinetics and Catalysis Letters, 1991, 44, 387-391.	0.6	8

#	Article	IF	CITATIONS
145	Cyclohexane photooxygenation by air oxygen in CH2Cl2 in the presence of chromium oxocomplex-iodosylbenzene system. Reaction Kinetics and Catalysis Letters, 1991, 45, 173-178.	0.6	7
146	Homogeneous oxidation of C–H bonds with ⟨i>m⟨li>-CPBA catalysed by a Co/Fe system: mechanistic insights from the point of view of the oxidant. Catalysis Science and Technology, 2022, 12, 282-299.	4.1	7
147	Novel Copper(II) Complexes with Dipinodiazafluorene Ligands: Synthesis, Structure, Magnetic and Catalytic Properties. Molecules, 2022, 27, 4072.	3.8	6
148	Diastereotopy in Transition Metal Complexes. Russian Chemical Reviews, 1980, 49, 645-654.	6.5	5
149	Hydrocarbon functionalization on palladium compounds in acidic solutions (a historical review). Journal of Organometallic Chemistry, 2018, 867, 25-32.	1.8	5
150	Vanadium(IV) Complexes with Methyl-Substituted 8-Hydroxyquinolines: Catalytic Potential in the Oxidation of Hydrocarbons and Alcohols with Peroxides and Biological Activity. Molecules, 2021, 26, 6364.	3.8	4
151	Interaction of HAuCl4 with aromatic compounds in protic media formation of If-aryl complexes of gold. Reaction Kinetics and Catalysis Letters, 1982, 20, 69-71.	0.6	2
152	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie, 2016, 128, 15586-15589.	2.0	1
153	Frontispiece: Cage-like Copper(II) Silsesquioxanes: Transmetalation Reactions and Structural, Quantum Chemical, and Catalytic Studies. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
154	Metal-Catalyzed Oxidation of C–H Compounds with Peroxides in Unconventional Solvents. Green Chemistry and Sustainable Technology, 2019, , 1-35.	0.7	0