Xin Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4680064/xin-wang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

161 86 7,872 41 h-index g-index citations papers 168 6.6 10,407 10 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
161	Oxidized Nb2C MXene as catalysts for lithium-sulfur batteries: mitigating the shuttle phenomenon by facilitating catalytic conversion of lithium polysulfides. <i>Journal of Materials Science and Technology</i> , 2022 ,	9.1	4
160	Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries. <i>Journal of Materials Science and Technology</i> , 2022 , 115, 140-147	9.1	O
159	In-situ constructed accordion-like Nb2C/Nb2O5 heterostructure as efficient catalyzer towards high-performance lithium-sulfur batteries. <i>Journal of Power Sources</i> , 2022 , 520, 230902	8.9	4
158	Freestanding carbon nanofibers encapsulating MOF-derived NiSe with in-situ porous carbon protective layer for sodium storage. <i>Applied Surface Science</i> , 2022 , 579, 152181	6.7	O
157	Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies <i>Chemical Society Reviews</i> , 2022 ,	58.5	8
156	Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. <i>Chemical Engineering Journal</i> , 2022 , 440, 135990	14.7	1
155	Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO electroreduction <i>Nature Communications</i> , 2022 , 13, 2486	17.4	6
154	Interspersing Partially Oxidized VC Nanosheets and Carbon Nanotubes toward Multifunctional Polysulfide Barriers for High-Performance Lithium-Sulfur Batteries. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 56085-56094	9.5	7
153	Synthesis of Double-Shelled [email[protected] Nanocages through a Spray-Drying Process as an Advanced Sulfur Reservoir for LithiumBulfur Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 12623-126	5 3 0 ¹	1
152	Design of Quasi-MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction Reaction for High-Performance Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2021 , e210554	1 ²⁴	18
151	Hierarchically Porous TiC MXene with Tunable Active Edges and Unsaturated Coordination Bonds for Superior Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2021 ,	16.7	10
150	Novel 2D/2D BiOBr/UMOFNs direct Z-scheme photocatalyst for efficient phenol degradation. <i>Nanotechnology</i> , 2021 , 32, 045711	3.4	4
149	Modulating Metal©rganic Frameworks as Advanced Oxygen Electrocatalysts. <i>Advanced Energy Materials</i> , 2021 , 11, 2003291	21.8	34
148	Baunal Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for High-Energy and Long-Lasting Lithium Bulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100497	21.8	16
147	Aligned sulfur-deficient ZnS1\(\mathbb{I}\) nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. <i>Nano Energy</i> , 2021 , 84, 105891	17.1	31
146	Electrolyte Design for Lithium Metal Anode-Based Batteries Toward Extreme Temperature Application. <i>Advanced Science</i> , 2021 , 8, e2101051	13.6	22
145	Recent Progress on Flexible Zn-Air Batteries. <i>Energy Storage Materials</i> , 2021 , 35, 538-549	19.4	43

(2021-2021)

144	Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting. <i>Journal of Materials Science and Technology</i> , 2021 , 68, 1-7	9.1	7	
143	Fe7Se8 encapsulated in N-doped carbon nanofibers as a stable anode material for sodium ion batteries. <i>Nanoscale Advances</i> , 2021 , 3, 231-239	5.1	10	
142	Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. <i>Nano Energy</i> , 2021 , 81, 105602	17.1	23	
141	Dissolving Vanadium into Titanium Nitride Lattice Framework for Rational Polysulfide Regulation in Liß Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003020	21.8	22	
140	Direct Growth of Oxygen Vacancy-Enriched CoO Nanosheets on Carbon Nanotubes for High-Performance Supercapacitors. <i>ACS Applied Materials & Applied</i>	9.5	19	
139	Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process. <i>Angewandte Chemie</i> , 2021 , 133, 2401-2408	3.6	7	
138	Amorphous Trystalline-heterostructured niobium oxide as two-in-one host matrix for high-performance lithium Fulfur batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11160-11167	13	6	
137	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. <i>Nature Communications</i> , 2021 , 12, 186	17.4	61	
136	Hierarchical Micro-Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur Reservoir for High-Performance Lithium-Sulfur Batteries. <i>Advanced Science</i> , 2021 , 8, 2003400	13.6	19	
135	Bimetallic Hollow Tubular NiCoO as a Bifunctional Electrocatalyst for Enhanced Oxygen Reduction and Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 7334-7342	9.5	8	
134	Rational Construction of Sulfur-Deficient NiCo2S4N Hollow Microspheres as an Effective Polysulfide Immobilizer toward High-Performance Lithium/Sulfur Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1687-1695	6.1	13	
133	A new defect-rich and ultrathin ZnCo layered double hydroxide/carbon nanotubes architecture to facilitate catalytic conversion of polysulfides for high-performance Li-S batteries. <i>Chemical Engineering Journal</i> , 2021 , 417, 129248	14.7	6	
132	Design Zwitterionic Amorphous Conjugated Micro-/Mesoporous Polymer Assembled Nanotentacle as Highly Efficient Sulfur Electrocatalyst for Lithium-Sulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101926	21.8	10	
131	Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. <i>Nano Energy</i> , 2021 , 86, 106094	17.1	27	
130	Ethylene Glycol Electrochemical Reforming Using Ruthenium Nanoparticle-Decorated Nickel Phosphide Ultrathin Nanosheets. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	4	
129	MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal. <i>Chemical Engineering Journal</i> , 2021 , 430, 132728	14.7	4	
128	Engineering the 3D framework of defective phosphorene-based sulfur cathodes for high-efficiency lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2021 , 392, 139025	6.7	2	
127	Engineering Oversaturated Fe-N Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26622-26629	16.4	23	

126	Defect engineering on three-dimensionally ordered macroporous phosphorus doped Co3O4D microspheres as an efficient bifunctional electrocatalyst for Zn-air batteries. <i>Energy Storage Materials</i> , 2021 , 41, 427-435	19.4	9
125	Sb2S3 nanoparticles anchored on N-doped 3D carbon nanofibers as anode material for sodium ion batteries with improved electrochemical performance. <i>Journal of Alloys and Compounds</i> , 2021 , 881, 160	55974	7
124	Copolymerization of urea and murexide for efficient photocatalytic hydrogen evolution and tetracycline degradation. <i>New Journal of Chemistry</i> , 2021 , 45, 1977-1983	3.6	O
123	Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a High-Efficiency Lithium Polysulfide Conversion Process. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2371-2378	16.4	78
122	Two-dimensional Materials for all-solid-state Lithium Batteries Advanced Materials, 2021, e2108079	24	8
121	Hematite photoanode modified with inexpensive hole-storage layer for highly efficient solar water oxidation. <i>Nanotechnology</i> , 2020 , 31, 455405	3.4	3
120	Nitrogen defects-rich porous graphitic carbon nitride for efficient photocatalytic hydrogen evolution. <i>Journal of Colloid and Interface Science</i> , 2020 , 578, 788-795	9.3	12
119	A MoS@SnS heterostructure for sodium-ion storage with enhanced kinetics. <i>Nanoscale</i> , 2020 , 12, 14689) - 71. 4 69	8 26
118	Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. <i>Nano Energy</i> , 2020 , 72, 104685	17.1	83
117	Influence of the Facets of Bi24O31Br10 Nanobelts and Nanosheets on Their Photocatalytic Properties. <i>Catalysts</i> , 2020 , 10, 257	4	8
116	Edge-Rich Fe-N Active Sites in Defective Carbon for Oxygen Reduction Catalysis. <i>Advanced Materials</i> , 2020 , 32, e2000966	24	113
115	Surface-Induced 2D/1D Heterostructured Growth of ReS/CoS for High-Performance Electrocatalysts. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	12
114	Nano-bridged nanosphere lithography. <i>Nanotechnology</i> , 2020 , 31, 245302	3.4	9
113	Microfluidic-Assisted Fabrication of Monodisperse Core-Shell Microcapsules for Pressure-Sensitive Adhesive with Enhanced Performance. <i>Nanomaterials</i> , 2020 , 10,	5.4	6
112	CuSe Nanoparticles Encapsulated by Nitrogen-Doped Carbon Nanofibers for Efficient Sodium Storage. <i>Nanomaterials</i> , 2020 , 10,	5.4	13
111	Defect-Rich Multishelled Fe-Doped CoO Hollow Microspheres with Multiple Spatial Confinements to Facilitate Catalytic Conversion of Polysulfides for High-Performance Li-S Batteries. <i>ACS Applied Materials & Description of Polysulfides (Naterials & Description of Polysulfides)</i>	9.5	70
110	Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium-Sulfur Batteries. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3583-3592	16.4	95
109	The electronic properties tuned by the synergy of polaron and d-orbital in a CoBn co-intercalated HMoO3 system. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6536-6541	7.1	2

(2020-2020)

108	MnSe embedded in carbon nanofibers as advanced anode material for sodium ion batteries. <i>Nanotechnology</i> , 2020 , 31, 335402	3.4	15	
107	Hierarchical Defective Fe3-xC@C Hollow Microsphere Enables Fast and Long-Lasting LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001165	15.6	85	
106	Extraordinary optical transmission in nano-bridged plasmonic arrays mimicking a stable weakly-connected percolation threshold. <i>Optics Express</i> , 2020 , 28, 31425-31435	3.3	6	
105	Enhanced performance of dye-sensitized solar cells anodes modified with black phosphorus nanosheets. <i>Journal of Materials Science</i> , 2020 , 55, 5499-5509	4.3	9	
104	Fe-doped Co-N/C as effective electrocatalyst for oxygen reaction. <i>Materials Research Express</i> , 2020 , 7, 085002	1.7	1	
103	Water Splitting Performance Enhancement of the TiO2 Nanorod Array Electrode with Ultrathin Black Phosphorus Nanosheets. <i>ChemElectroChem</i> , 2020 , 7, 96-104	4.3	12	
102	Amorphous Ti(IV)-modified flower-like ZnIn2S4 microspheres with enhanced hydrogen evolution photocatalytic activity and simultaneous wastewater purification. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2693-2699	7.1	9	
101	Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation. <i>Applied Catalysis B: Environmental</i> , 2020 , 265, 118567	21.8	53	
100	Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. <i>Journal of Power Sources</i> , 2020 , 450, 227615	8.9	17	
99	Unusual Mechanism Behind Enhanced Photocatalytic Activity and Surface Passivation of SiC(0001) via Forming Heterostructure with a MoS2 Monolayer. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 1362-7	1368	4	
98	Engineering the Conductive Network of Metal Oxide-Based Sulfur Cathode toward Efficient and Longevous LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2002076	21.8	60	
97	Highly conductive VC embedded in carbon matrix as effective trapper and catalyst for Li-S batteries. <i>Chemical Communications</i> , 2020 , 56, 14295-14298	5.8	10	
96	Promoting Ge Alloying Reaction via Heterostructure Engineering for High Efficient and Ultra-Stable Sodium-Ion Storage. <i>Advanced Science</i> , 2020 , 7, 2002358	13.6	14	
95	Visible-light-driven Ag/AgCl@In2O3: a ternary photocatalyst for the degradation of tetracycline antibiotics. <i>Catalysis Science and Technology</i> , 2020 , 10, 8230-8239	5.5	8	
94	Boft on rigid[hanohybrid as the self-supporting multifunctional cathode electrocatalyst for high-performance lithium-polysulfide batteries. <i>Nano Energy</i> , 2020 , 78, 105293	17.1	21	
93	Unexpected bowing band evolution in an all-inorganic CsSn Pb Br perovskite <i>RSC Advances</i> , 2020 , 10, 26407-26413	3.7	3	
92	A Full Li-S Battery with Ultralow Excessive Li Enabled via Lithiophilic and Sulfilic W C Modulation. <i>Chemistry - A European Journal</i> , 2020 , 26, 16057-16065	4.8	7	
91	Novel Fe2O3/PZT Nanorods for Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting. <i>Energy & Energy </i>	4.1	3	

90	Conductive FeOOH as Multifunctional Interlayer for Superior Lithium-Sulfur Batteries. <i>Small</i> , 2020 , 16, e2002789	11	30
89	Cu3Ge coated by nitrogen-doped carbon nanorods as advanced sodium-ion battery anodes. <i>lonics</i> , 2020 , 26, 719-726	2.7	10
88	Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. <i>Nature Communications</i> , 2020 , 11, 1952	17.4	93
87	Enhanced Photocatalytic H Evolution over ZnInS Flower-Like Microspheres Doped with Black Phosphorus Quantum Dots. <i>Nanomaterials</i> , 2019 , 9,	5.4	20
86	Synthesis of highly defective hollow double-shelled Co3O4\(\mathbb{N}\) microspheres as sulfur host for high-performance lithium-sulfur batteries. <i>Materials Letters</i> , 2019 , 255, 126581	3.3	10
85	Multi-functional carbon cloth infused with N-doped and Co-coated carbon nanofibers as a current collector for ultra-stable lithium-sulfur batteries. <i>Materials Letters</i> , 2019 , 255, 126595	3.3	9
84	Ultra-fine zinc oxide nanocrystals decorated three-dimensional macroporous polypyrrole inverse opal as efficient sulfur hosts for lithium/sulfur batteries. <i>Chemical Engineering Journal</i> , 2019 , 375, 1220	5 5 4.7	24
83	Lithium Pre-cycling Induced Fast Kinetics of Commercial Sb2S3 Anode for Advanced Sodium Storage. <i>Energy and Environmental Materials</i> , 2019 , 2, 209-215	13	10
82	Carbon nanotubes/SiC prepared by catalytic chemical vapor deposition as scaffold for improved lithium-sulfur batteries. <i>Journal of Nanoparticle Research</i> , 2019 , 21, 1	2.3	5
81	Construction of Oxygen-Deficient La(OH) Nanorods Wrapped by Reduced Graphene Oxide for Polysulfide Trapping toward High-Performance Lithium/Sulfur Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 23271-23279	9.5	42
80	Reduced Graphene Oxide Boosted Ultrafine Cu2SnS3 Nanoparticles for High-performance Sodium Storage. <i>ChemElectroChem</i> , 2019 , 6, 2949-2955	4.3	5
79	Interfacial Complexation Induced Controllable Fabrication of Stable Polyelectrolyte Microcapsules Using All-Aqueous Droplet Microfluidics for Enzyme Release. <i>ACS Applied Materials & amp; Interfaces</i> , 2019, 11, 21227-21238	9.5	18
78	Improving lithium storage capability of ternary Sn-based sulfides by enhancing inactive/active element ratio. <i>Solid State Ionics</i> , 2019 , 337, 47-55	3.3	8
77	Synthesis of ZnO/Polypyrrole Nanoring Composite as High-Performance Anode Materials for Lithium Ion Batteries. <i>Journal of Nanomaterials</i> , 2019 , 2019, 1-8	3.2	1
76	Synthesis and characterization of mesoporous BiVO4 nanofibers with enhanced photocatalytic water oxidation performance. <i>Applied Surface Science</i> , 2019 , 481, 255-261	6.7	24
75	Nitrogen-Doped Carbon-Encapsulated Antimony Sulfide Nanowires Enable High Rate Capability and Cyclic Stability for Sodium-Ion Batteries. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1457-1465	5.6	32
74	Chemical and structural origin of lattice oxygen oxidation in Coll oxyhydroxide oxygen evolution electrocatalysts. <i>Nature Energy</i> , 2019 , 4, 329-338	62.3	542
73	First-Principles Study of Optoelectronic Properties of the Noble Metal (Ag and Pd) Doped BiOX (X = F, Cl, Br, and I) Photocatalytic System. <i>Catalysts</i> , 2019 , 9, 198	4	14

(2018-2019)

72	Dual Interfacial Design for Efficient CsPbI Br Perovskite Solar Cells with Improved Photostability. <i>Advanced Materials</i> , 2019 , 31, e1901152	24	248
71	Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. <i>Energy Storage Materials</i> , 2019 , 18, 375-381	19.4	69
70	The distinctive phase stability and defect physics in CsPbI2Br perovskite. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20201-20207	13	34
69	Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. <i>Nano Energy</i> , 2019 , 64, 103905	17.1	74
68	Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13532-13539	16.4	84
67	Integration of NaV6O15[hH2O nanowires and rGO as cathode materials for efficient sodium storage. <i>Applied Surface Science</i> , 2019 , 494, 458-464	6.7	12
66	Stable Copper Tin Sulfide Nanoflower Modified Carbon Quantum Dots for Improved Supercapacitors. <i>Journal of Chemistry</i> , 2019 , 2019, 1-5	2.3	3
65	KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. <i>Carbon</i> , 2019 , 153, 6-11	10.4	39
64	The fabrication of a 3D current collector with bitter melon-like TiO2NCNFs for highly stable lithiumBulfur batteries. <i>Nanoscale Advances</i> , 2019 , 1, 527-531	5.1	2
63	Lotus Root-Like Nitrogen-Doped Carbon Nanofiber Structure Assembled with VN Catalysts as a Multifunctional Host for Superior Lithium-Sulfur Batteries. <i>Nanomaterials</i> , 2019 , 9,	5.4	9
62	TiVN composite hollow mesospheres for high-performance supercapacitors. <i>Materials Research Express</i> , 2019 , 6, 025801	1.7	2
61	Modified Nanopillar Arrays for Highly Stable and Efficient Photoelectrochemical Water Splitting. <i>Global Challenges</i> , 2019 , 3, 1800027	4.3	3
60	Vanadium nitride-decorated lotus root-like NCNFs as 3D current collector for Li-S batteries. <i>Materials Letters</i> , 2019 , 236, 240-243	3.3	8
59	Carbon Nanosheets Containing Discrete Co-N-B-C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries. <i>ACS Nano</i> , 2018 , 12, 1894-1901	16.7	294
58	Modified Si nanowire/graphite-like carbon nitride core-shell photoanodes for solar water splitting. <i>Electrochemistry Communications</i> , 2018 , 87, 13-17	5.1	13
57	Synthesis of visible-light-driven BiOBrxI1-x solid solution nanoplates by ultrasound-assisted hydrolysis method with tunable bandgap and superior photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2018 , 732, 167-177	5.7	33
56	Synthesis of barbituric acid doped carbon nitride for efficient solar-driven photocatalytic degradation of aniline. <i>Applied Surface Science</i> , 2018 , 428, 739-747	6.7	19
55	Broadband photoluminescence of silicon nanowires excited by near-infrared continuous wave lasers. <i>Optics and Laser Technology</i> , 2018 , 99, 81-85	4.2	4

54	Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 1677-1685	3	8
53	A simple capillary-based open microfluidic device for size on-demand high-throughput droplet/bubble/microcapsule generation. <i>Lab on A Chip</i> , 2018 , 18, 2806-2815	7.2	23
52	Flower-like CuBnSINanostructure Materials with High Crystallinity for Sodium Storage. <i>Nanomaterials</i> , 2018 , 8,	5.4	18
51	Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries. <i>Nanomaterials</i> , 2018 , 8,	5.4	35
50	Hierarchical self-assembled BiS hollow nanotubes coated with sulfur-doped amorphous carbon as advanced anode materials for lithium ion batteries. <i>Nanoscale</i> , 2018 , 10, 13343-13350	7.7	46
49	Synergistic effect of Cu-ion and WO 3 nanofibers on the enhanced photocatalytic degradation of Rhodamine B and aniline solution. <i>Applied Surface Science</i> , 2018 , 451, 306-314	6.7	30
48	Novel silicon nanowire film on copper foil as high performance anode for lithium-ion batteries. <i>Jonics</i> , 2018 , 24, 373-378	2.7	16
47	Synthesis and Investigation of CuGeO Nanowires as Anode Materials for Advanced Sodium-Ion Batteries. <i>Nanoscale Research Letters</i> , 2018 , 13, 193	5	17
46	In Situ Synthesis of All-Solid-State Z-Scheme BiOBrI/Ag/AgI Photocatalysts with Enhanced Photocatalytic Activity Under Visible Light Irradiation. <i>Nanoscale Research Letters</i> , 2018 , 13, 368	5	8
45	Two-Dimensional CeO/RGO Composite-Modified Separator for Lithium/Sulfur Batteries. <i>Nanoscale Research Letters</i> , 2018 , 13, 377	5	19
44	Flexible Freestanding Carbon Nanofiber-Embedded TiO Nanoparticles as Anode Material for Sodium-Ion Batteries. <i>Scanning</i> , 2018 , 2018, 4725328	1.6	2
43	Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. <i>Advanced Energy Materials</i> , 2018 , 8, 1801909	21.8	263
42	The Ternary Heterostructures of BiOBr/Ultrathin g-CN/Black Phosphorous Quantum Dot Composites for Photodegradation of Tetracycline. <i>Polymers</i> , 2018 , 10,	4.5	7
41	Insights into the mechanism of the enhanced visible-light photocatalytic activity of black phosphorus/BiVO4 heterostructure: a first-principles study. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19167-19175	13	49
40	One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2017 , 206, 319-327	21.8	262
39	Three-dimensional carbon cloth-supported ZnO nanorod arrays as a binder-free anode for lithium-ion batteries. <i>Journal of Nanoparticle Research</i> , 2017 , 19, 1	2.3	10
38	Constructing novel WO3/Fe(III) nanofibers photocatalysts with enhanced visible-light-driven photocatalytic activity via interfacial charge transfer effect. <i>Materials Today Energy</i> , 2017 , 3, 45-52	7	21
37	Well-dispersed sulfur anchored on interconnected polypyrrole nanofiber network as high performance cathode for lithium-sulfur batteries. <i>Solid State Sciences</i> , 2017 , 66, 44-49	3.4	54

(2016-2017)

36	Photocatalyst with Efficient Visible-Light-Induced Photocatalytic Degradation of Phenol and Dyes. ACS Omega, 2017 , 2, 2728-2739	3.9	59
35	Effective silicon nanowire arrays/WO core/shell photoelectrode for neutral pH water splitting. <i>Nanotechnology</i> , 2017 , 28, 275401	3.4	18
34	Ordered multiferroic CoFe2O4Pb(Zr0.52Ti0.48)O3 coaxial nanotube arrays with enhanced magnetoelectric coupling. <i>RSC Advances</i> , 2017 , 7, 29096-29102	3.7	8
33	Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. <i>Nano Energy</i> , 2017 , 40, 308-316	17.1	235
32	Facile Construction of Metal-Free g-C3N4 Isotype Heterojunction with Highly Enhanced Visible-light Photocatalytic Performance. <i>ChemistrySelect</i> , 2017 , 2, 6970-6978	1.8	6
31	Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives. <i>Advanced Energy Materials</i> , 2017 , 7, 1700544	21.8	407
30	Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. <i>ACS Energy Letters</i> , 2017 , 2, 2035-2043	20.1	139
29	Fabrication and photoelectrochemical properties of silicon nanowires/g-C3N4 core/shell arrays. <i>Applied Surface Science</i> , 2017 , 396, 609-615	6.7	41
28	Synergistic Effects of Ag Nanoparticles/BiVMoO with Enhanced Photocatalytic Activity. <i>Nanoscale Research Letters</i> , 2017 , 12, 588	5	2
27	Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries. <i>Nanomaterials</i> , 2017 , 7,	5.4	36
26	In situ surface alkalinized g-C3N4 toward enhancement of photocatalytic H2 evolution under visible-light irradiation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2943-2950	13	191
25	Interconnected nitrogen-doped carbon nanofibers derived from polypyrrole for high-performance Li/S batteries. <i>Russian Journal of Applied Chemistry</i> , 2016 , 89, 1336-1340	0.8	7
24	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17587-17603	13	740
23	Synthesis of Mesoporous ZnO Nanosheets via Facile Solvothermal Method as the Anode Materials for Lithium-ion Batteries. <i>Nanoscale Research Letters</i> , 2016 , 11, 37	5	23
22	Plasmonic refraction-induced ultrahigh transparency of highly conducting metallic networks. <i>Laser and Photonics Reviews</i> , 2016 , 10, 465-472	8.3	6
21	Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. <i>Electrochimica Acta</i> , 2016 , 205, 132-141	6.7	109
20	Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst. <i>Nano Energy</i> , 2016 , 30, 368-378	17.1	196
19	Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries. <i>Materials Letters</i> , 2016 , 184, 235-238	3.3	33

18	Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. <i>Nano Letters</i> , 2014 , 14, 18-23	11.5	142
17	Preparation of high purity crystalline silicon by electro-catalytic reduction of sodium hexafluorosilicate with sodium below 180 CC. <i>PLoS ONE</i> , 2014 , 9, e105537	3.7	О
16	Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. <i>Nanoscale</i> , 2013 , 5, 8689-94	7.7	42
15	Silicon nanowires for advanced energy conversion and storage. <i>Nano Today</i> , 2013 , 8, 75-97	17.9	227
14	Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications. <i>Applied Physics Letters</i> , 2012 , 100, 223902	3.4	27
13	High-Performance Silicon Nanowire Array Photoelectrochemical Solar Cells through Surface Passivation and Modification. <i>Angewandte Chemie</i> , 2011 , 123, 10035-10039	3.6	9
12	High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 9861-5	16.4	121
11	High-performance silicon nanohole solar cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 687	2 1 36.4	272
10	Single crystalline ordered silicon wire/Pt nanoparticle hybrids for solar energy harvesting. <i>Electrochemistry Communications</i> , 2010 , 12, 509-512	5.1	13
9	Fabrication and photovoltaic property of ordered macroporous silicon. <i>Applied Physics Letters</i> , 2009 , 95, 143119	3.4	48
8	Gas sensing properties of single crystalline porous silicon nanowires. <i>Applied Physics Letters</i> , 2009 , 95, 243112	3.4	126
7	Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. <i>Nano Letters</i> , 2009 , 9, 3704-9	11.5	227
6	Silicon nanowire array photoelectrochemical solar cells. <i>Applied Physics Letters</i> , 2008 , 92, 163103	3.4	233
5	Integrating Nanoreactor with ONba Heterointerface Design and Defects Engineering Toward High-Efficiency and Longevous Sodium Ion Battery. <i>Advanced Energy Materials</i> ,2103716	21.8	11
4	The electrochemical reforming of glycerol at Pd nanocrystals modified ultrathin NiO nanoplates hybrids: An efficient system for glyceraldehyde and hydrogen coproduction. <i>Nano Research</i> ,1	10	О
3	Engineering Oversaturated Fe-N5 Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. <i>Angewandte Chemie</i> ,	3.6	1
2	Enhanced polysulfide redox kinetics by niobium oxynitrides via in-situ adsorptive and catalytic effect in wide temperature range. <i>Nano Research</i> ,1	10	1
1	Structure modification of Ni-rich layered oxide cathode toward advanced lithium-ion batteries. Journal of Materials Research,	2.5	