Xin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4680064/publications.pdf

Version: 2024-02-01

31974 25787 12,799 165 53 108 citations h-index g-index papers 168 168 168 14013 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 17587-17603.	10.3	1,037
2	Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nature Energy, 2019, 4, 329-338.	39.5	977
3	Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives. Advanced Energy Materials, 2017, 7, 1700544.	19.5	593
4	Selective Electrochemical H ₂ O ₂ Production through Twoâ€Electron Oxygen Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909.	19.5	498
5	Carbon Nanosheets Containing Discrete Co-N _{<i>x</i>} -B _{<i>y</i>} -C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries. ACS Nano, 2018, 12, 1894-1901.	14.6	419
6	One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity. Applied Catalysis B: Environmental, 2017, 206, 319-327.	20.2	387
7	Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy, 2017, 40, 308-316.	16.0	346
8	Dual Interfacial Design for Efficient CsPbl ₂ Br Perovskite Solar Cells with Improved Photostability. Advanced Materials, 2019, 31, e1901152.	21.0	328
9	High-Performance Silicon Nanohole Solar Cells. Journal of the American Chemical Society, 2010, 132, 6872-6873.	13.7	313
10	Silicon nanowires for advanced energy conversion and storage. Nano Today, 2013, 8, 75-97.	11.9	266
11	Silicon nanowire array photoelectrochemical solar cells. Applied Physics Letters, 2008, 92, .	3.3	255
12	Platinum Nanoparticle Decorated Silicon Nanowires for Efficient Solar Energy Conversion. Nano Letters, 2009, 9, 3704-3709.	9.1	248
13	In situ surface alkalinized g-C ₃ N ₄ toward enhancement of photocatalytic H ₂ evolution under visible-light irradiation. Journal of Materials Chemistry A, 2016, 4, 2943-2950.	10.3	247
14	Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst. Nano Energy, 2016, 30, 368-378.	16.0	229
15	Edgeâ€Rich Feâ^N ₄ Active Sites in Defective Carbon for Oxygen Reduction Catalysis. Advanced Materials, 2020, 32, e2000966.	21.0	215
16	Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery. Nature Communications, 2020, 11, 1952.	12.8	185
17	Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a Highâ€Efficiency Lithium Polysulfide Conversion Process. Angewandte Chemie - International Edition, 2021, 60, 2371-2378.	13.8	176
18	Unsupported Platinum-Based Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2017, 2, 2035-2043.	17.4	174

#	Article	IF	CITATIONS
19	Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2020, 142, 3583-3592.	13.7	174
20	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nature Communications, 2021, 12, 186.	12.8	163
21	Silicon/Hematite Core/Shell Nanowire Array Decorated with Gold Nanoparticles for Unbiased Solar Water Oxidation. Nano Letters, 2014, 14, 18-23.	9.1	162
22	Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy, 2020, 72, 104685.	16.0	160
23	Gas sensing properties of single crystalline porous silicon nanowires. Applied Physics Letters, 2009, 95, .	3.3	145
24	Hierarchical Defective Fe _{3â€} <i>_x</i> C@C Hollow Microsphere Enables Fast and Long‣asting Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2001165.	14.9	144
25	Engineering Oversaturated Feâ€N ₅ Multifunctional Catalytic Sites for Durable Lithiumâ€5ulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 26622-26629.	13.8	144
26	Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 13532-13539.	13.8	143
27	Recent Progress on Flexible Zn-Air Batteries. Energy Storage Materials, 2021, 35, 538-549.	18.0	143
28	Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochimica Acta, 2016, 205, 132-141.	5.2	130
29	Defect-Rich Multishelled Fe-Doped Co ₃ O ₄ Hollow Microspheres with Multiple Spatial Confinements to Facilitate Catalytic Conversion of Polysulfides for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 12763-12773.	8.0	129
30	Highâ€Performance Silicon Nanowire Array Photoelectrochemical Solar Cells through Surface Passivation and Modification. Angewandte Chemie - International Edition, 2011, 50, 9861-9865.	13.8	127
31	Engineering the Conductive Network of Metal Oxideâ∈Based Sulfur Cathode toward Efficient and Longevous Lithiumâ∈"Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002076.	19.5	126
32	Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. Nano Energy, 2019, 64, 103905.	16.0	119
33	Modulating Metal–Organic Frameworks as Advanced Oxygen Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003291.	19.5	105
34	Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy, 2021, 86, 106094.	16.0	103
35	Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction. Nature Communications, 2022, 13, 2486.	12.8	99
36	Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. Energy Storage Materials, 2019, 18, 375-381.	18.0	96

#	Article	IF	CITATIONS
37	Electrolyte Design for Lithium Metal Anodeâ€Based Batteries Toward Extreme Temperature Application. Advanced Science, 2021, 8, e2101051.	11.2	95
38	Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation. Applied Catalysis B: Environmental, 2020, 265, 118567.	20.2	89
39	Design of Quasiâ€MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction Reaction for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2105541.	21.0	87
40	Insights into the mechanism of the enhanced visible-light photocatalytic activity of black phosphorus/BiVO ₄ heterostructure: a first-principles study. Journal of Materials Chemistry A, 2018, 6, 19167-19175.	10.3	86
41	Aligned sulfur-deficient ZnS1â^'x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. Nano Energy, 2021, 84, 105891.	16.0	81
42	In Situ Hydrothermal Construction of Direct Solid-State Nano-Z-Scheme BiVO ₄ /Pyridine-Doped g-C ₃ N ₄ Photocatalyst with Efficient Visible-Light-Induced Photocatalytic Degradation of Phenol and Dyes. ACS Omega, 2017, 2, 2728-2739.	3.5	75
43	Construction of Oxygen-Deficient La(OH) ₃ Nanorods Wrapped by Reduced Graphene Oxide for Polysulfide Trapping toward High-Performance Lithium/Sulfur Batteries. ACS Applied Materials & Amp; Interfaces, 2019, 11, 23271-23279.	8.0	71
44	KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon, 2019, 153, 6-11.	10.3	69
45	Hierarchical self-assembled Bi ₂ S ₃ hollow nanotubes coated with sulfur-doped amorphous carbon as advanced anode materials for lithium ion batteries. Nanoscale, 2018, 10, 13343-13350.	5.6	67
46	Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chemical Society Reviews, 2022, 51, 2917-2938.	38.1	65
47	The distinctive phase stability and defect physics in CsPbl ₂ Br perovskite. Journal of Materials Chemistry A, 2019, 7, 20201-20207.	10.3	64
48	Hierarchical Microâ€Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur Reservoir for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2021, 8, 2003400.	11.2	63
49	Hierarchically Porous Ti ₃ C ₂ MXene with Tunable Active Edges and Unsaturated Coordination Bonds for Superior Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 19457-19467.	14.6	63
50	Well-dispersed sulfur anchored on interconnected polypyrrole nanofiber network as high performance cathode for lithium-sulfur batteries. Solid State Sciences, 2017, 66, 44-49.	3.2	61
51	Conductive FeOOH as Multifunctional Interlayer for Superior Lithium–Sulfur Batteries. Small, 2020, 16, e2002789.	10.0	58
52	Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale, 2013, 5, 8689.	5.6	56
53	Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy, 2021, 81, 105602.	16.0	56
54	Direct Growth of Oxygen Vacancy-Enriched Co ₃ O ₄ Nanosheets on Carbon Nanotubes for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4419-4428.	8.0	55

#	Article	IF	Citations
55	Fabrication and photovoltaic property of ordered macroporous silicon. Applied Physics Letters, 2009, 95, .	3.3	53
56	A MoS ₂ @SnS heterostructure for sodium-ion storage with enhanced kinetics. Nanoscale, 2020, 12, 14689-14698.	5.6	53
57	"Sauna―Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for Highâ€Energy and Longâ€Lasting Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100497.	19.5	53
58	Dissolving Vanadium into Titanium Nitride Lattice Framework for Rational Polysulfide Regulation in Li–S Batteries. Advanced Energy Materials, 2021, 11, 2003020.	19.5	52
59	Defect engineering on three-dimensionally ordered macroporous phosphorus doped Co3O4–δ microspheres as an efficient bifunctional electrocatalyst for Zn-air batteries. Energy Storage Materials, 2021, 41, 427-435.	18.0	47
60	Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries. Materials Letters, 2016, 184, 235-238.	2.6	45
61	Fabrication and photoelectrochemical properties of silicon nanowires/g-C3N4 core/shell arrays. Applied Surface Science, 2017, 396, 609-615.	6.1	45
62	Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries. Nanomaterials, 2017, 7, 402.	4.1	45
63	2D Materials for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2022, 34, e2108079.	21.0	45
64	Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries. Nanomaterials, 2018, 8, 50.	4.1	43
65	Nitrogen-Doped Carbon-Encapsulated Antimony Sulfide Nanowires Enable High Rate Capability and Cyclic Stability for Sodium-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 1457-1465.	5.0	40
66	Integrating Nanoreactor with O–Nb–C Heterointerface Design and Defects Engineering Toward Highâ€Efficiency and Longevous Sodium Ion Battery. Advanced Energy Materials, 2022, 12, .	19.5	40
67	Synthesis of visible-light-driven BiOBrxI1-x solid solution nanoplates by ultrasound-assisted hydrolysis method with tunable bandgap and superior photocatalytic activity. Journal of Alloys and Compounds, 2018, 732, 167-177.	5.5	39
68	Amorphous–crystalline-heterostructured niobium oxide as two-in-one host matrix for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 11160-11167.	10.3	39
69	Synergistic effect of Cu-ion and WO 3 nanofibers on the enhanced photocatalytic degradation of Rhodamine B and aniline solution. Applied Surface Science, 2018, 451, 306-314.	6.1	38
70	Interfacial Complexation Induced Controllable Fabrication of Stable Polyelectrolyte Microcapsules Using All-Aqueous Droplet Microfluidics for Enzyme Release. ACS Applied Materials & Interfaces, 2019, 11, 21227-21238.	8.0	38
71	Enhanced Photocatalytic H2 Evolution over Znln2S4 Flower-Like Microspheres Doped with Black Phosphorus Quantum Dots. Nanomaterials, 2019, 9, 1266.	4.1	36
72	Ultra-fine zinc oxide nanocrystals decorated three-dimensional macroporous polypyrrole inverse opal as efficient sulfur hosts for lithium/sulfur batteries. Chemical Engineering Journal, 2019, 375, 122055.	12.7	36

#	Article	IF	CITATIONS
7 3	"Soft on rigid―nanohybrid as the self-supporting multifunctional cathode electrocatalyst for high-performance lithium-polysulfide batteries. Nano Energy, 2020, 78, 105293.	16.0	36
74	Synthesis and characterization of mesoporous BiVO4 nanofibers with enhanced photocatalytic water oxidation performance. Applied Surface Science, 2019, 481, 255-261.	6.1	35
7 5	Rational Construction of Sulfur-Deficient NiCo ₂ S _{4–<i>×</i>} Hollow Microspheres as an Effective Polysulfide Immobilizer toward High-Performance Lithium/Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 1687-1695.	5.1	34
76	A simple capillary-based open microfluidic device for size on-demand high-throughput droplet/bubble/microcapsule generation. Lab on A Chip, 2018, 18, 2806-2815.	6.0	33
77	MnSe embedded in carbon nanofibers as advanced anode material for sodium ion batteries. Nanotechnology, 2020, 31, 335402.	2.6	33
78	Design Zwitterionic Amorphous Conjugated Microâ€/Mesoporous Polymer Assembled Nanotentacle as Highly Efficient Sulfur Electrocatalyst for Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2101926.	19.5	32
79	Surface-Induced 2D/1D Heterostructured Growth of ReS ₂ /CoS ₂ for High-Performance Electrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 33586-33594.	8.0	30
80	Broadband optical absorption enhancement in silicon nanofunnel arrays for photovoltaic applications. Applied Physics Letters, 2012 , 100 , .	3.3	29
81	Two-Dimensional CeO2/RGO Composite-Modified Separator for Lithium/Sulfur Batteries. Nanoscale Research Letters, 2018, 13, 377.	5.7	29
82	Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. Journal of Power Sources, 2020, 450, 227615.	7.8	29
83	Synthesis of Mesoporous ZnO Nanosheets via Facile Solvothermal Method as the Anode Materials for Lithium-ion Batteries. Nanoscale Research Letters, 2016 , 11 , 37 .	5.7	28
84	Visible-light-driven Ag/AgCl@In ₂ O ₃ : a ternary photocatalyst for the degradation of tetracycline antibiotics. Catalysis Science and Technology, 2020, 10, 8230-8239.	4.1	28
85	Synthesis of barbituric acid doped carbon nitride for efficient solar-driven photocatalytic degradation of aniline. Applied Surface Science, 2018, 428, 739-747.	6.1	26
86	A new defect-rich and ultrathin ZnCo layered double hydroxide/carbon nanotubes architecture to facilitate catalytic conversion of polysulfides for high-performance Li-S batteries. Chemical Engineering Journal, 2021, 417, 129248.	12.7	26
87	Interspersing Partially Oxidized V ₂ C Nanosheets and Carbon Nanotubes toward Multifunctional Polysulfide Barriers for High-Performance Lithium-Sulfur Batteries. ACS Applied Materials & Description (1988) 11, 13, 56085-56094.	8.0	26
88	Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries. Chem Catalysis, 2022, 2, 1480-1493.	6.1	26
89	Constructing novel WO3/Fe(III) nanofibers photocatalysts with enhanced visible-light-driven photocatalytic activity via interfacial charge transfer effect. Materials Today Energy, 2017, 3, 45-52.	4.7	24

First-Principles Study of Optoelectronic Properties of the Noble Metal (Ag and Pd) Doped BiOX (X = F,) Tj ETQq0 0 0 grgBT /Overlock 10 To 24

#	Article	IF	Citations
91	Fe ₇ Se ₈ encapsulated in N-doped carbon nanofibers as a stable anode material for sodium ion batteries. Nanoscale Advances, 2021, 3, 231-239.	4.6	24
92	Heterogeneous Nanodomain Electrolytes for Ultra‣ong‣ife Allâ€Solidâ€State Lithiumâ€Metal Batteries. Advanced Functional Materials, 2022, 32, .	14.9	23
93	Novel silicon nanowire film on copper foil as high performance anode for lithium-ion batteries. lonics, 2018, 24, 373-378.	2.4	22
94	Promoting Ge Alloying Reaction via Heterostructure Engineering for High Efficient and Ultraâ€Stable Sodiumâ€Ion Storage. Advanced Science, 2020, 7, 2002358.	11.2	22
95	Nitrogen defects-rich porous graphitic carbon nitride for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 578, 788-795.	9.4	22
96	Engineering Oversaturated Feâ€N ₅ Multifunctional Catalytic Sites for Durable Lithiumâ€Sulfur Batteries. Angewandte Chemie, 2021, 133, 26826-26833.	2.0	22
97	Effective silicon nanowire arrays/WO3 core/shell photoelectrode for neutral pH water splitting. Nanotechnology, 2017, 28, 275401.	2.6	21
98	Bimetallic Hollow Tubular NiCoO _{<i>x</i>} as a Bifunctional Electrocatalyst for Enhanced Oxygen Reduction and Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7334-7342.	8.0	21
99	MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal. Chemical Engineering Journal, 2022, 430, 132728.	12.7	21
100	Amorphous Ti(<scp>iv</scp>)-modified flower-like Znln ₂ S ₄ microspheres with enhanced hydrogen evolution photocatalytic activity and simultaneous wastewater purification. Journal of Materials Chemistry C, 2020, 8, 2693-2699.	5.5	20
101	Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. Chemical Engineering Journal, 2022, 440, 135990.	12.7	20
102	The plasticizer-free composite block copolymer electrolytes for ultralong lifespan all-solid-state lithium-metal batteries. Nano Energy, 2022, 100, 107499.	16.0	20
103	Flower-like Cu2SnS3 Nanostructure Materials with High Crystallinity for Sodium Storage. Nanomaterials, 2018, 8, 475.	4.1	19
104	Integration of NaV6O15·nH2O nanowires and rGO as cathode materials for efficient sodium storage. Applied Surface Science, 2019, 494, 458-464.	6.1	19
105	Cu2Se Nanoparticles Encapsulated by Nitrogen-Doped Carbon Nanofibers for Efficient Sodium Storage. Nanomaterials, 2020, 10, 302.	4.1	19
106	Sb2S3 nanoparticles anchored on N-doped 3D carbon nanofibers as anode material for sodium ion batteries with improved electrochemical performance. Journal of Alloys and Compounds, 2021, 881, 160594.	5.5	19
107	Synthesis and Investigation of CuGeO3 Nanowires as Anode Materials for Advanced Sodium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 193.	5.7	18
108	Water Splitting Performance Enhancement of the TiO 2 Nanorod Array Electrode with Ultrathin Black Phosphorus Nanosheets. ChemElectroChem, 2020, 7, 96-104.	3.4	18

#	Article	IF	CITATIONS
109	Lithium Preâ€cycling Induced Fast Kinetics of Commercial Sb ₂ S ₃ Anode for Advanced Sodium Storage. Energy and Environmental Materials, 2019, 2, 209-215.	12.8	17
110	Highly conductive VC embedded in carbon matrix as effective trapper and catalyst for Li–S batteries. Chemical Communications, 2020, 56, 14295-14298.	4.1	17
111	Single crystalline ordered silicon wire/Pt nanoparticle hybrids for solar energy harvesting. Electrochemistry Communications, 2010, 12, 509-512.	4.7	16
112	Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting. Journal of Materials Science and Technology, 2021, 68, 1-7.	10.7	16
113	Modified Si nanowire/graphite-like carbon nitride core-shell photoanodes for solar water splitting. Electrochemistry Communications, 2018, 87, 13-17.	4.7	15
114	Lotus Root-Like Nitrogen-Doped Carbon Nanofiber Structure Assembled with VN Catalysts as a Multifunctional Host for Superior Lithium–Sulfur Batteries. Nanomaterials, 2019, 9, 1724.	4.1	15
115	Nano-bridged nanosphere lithography. Nanotechnology, 2020, 31, 245302.	2.6	15
116	Ethylene Glycol Electrochemical Reforming Using Ruthenium Nanoparticle-Decorated Nickel Phosphide Ultrathin Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 42763-42772.	8.0	15
117	Enhanced performance of dye-sensitized solar cells anodes modified with black phosphorus nanosheets. Journal of Materials Science, 2020, 55, 5499-5509.	3.7	15
118	Novel 2D/2D BiOBr/UMOFNs direct Z-scheme photocatalyst for efficient phenol degradation. Nanotechnology, 2021, 32, 045711.	2.6	15
119	Synthesis of highly defective hollow double-shelled Co3O4â^'x microspheres as sulfur host for high-performance lithium-sulfur batteries. Materials Letters, 2019, 255, 126581.	2.6	14
120	Freestanding carbon nanofibers encapsulating MOF-derived NiSe with in-situ porous carbon protective layer for sodium storage. Applied Surface Science, 2022, 579, 152181.	6.1	14
121	Oxidized Nb2C MXene as catalysts for lithium-sulfur batteries: Mitigating the shuttle phenomenon by facilitating catalytic conversion of lithium polysulfides. Journal of Materials Science and Technology, 2022, 119, 45-52.	10.7	14
122	Three-dimensional carbon cloth-supported ZnO nanorod arrays as a binder-free anode for lithium-ion batteries. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	13
123	Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a Highâ€Efficiency Lithium Polysulfide Conversion Process. Angewandte Chemie, 2021, 133, 2401-2408.	2.0	13
124	The electrochemical reforming of glycerol at Pd nanocrystals modified ultrathin NiO nanoplates hybrids: An efficient system for glyceraldehyde and hydrogen coproduction. Nano Research, 2022, 15, 1934-1941.	10.4	13
125	In-situ constructed accordion-like Nb2C/Nb2O5 heterostructure as efficient catalyzer towards high-performance lithium-sulfur batteries. Journal of Power Sources, 2022, 520, 230902.	7.8	13
126	Multi-functional carbon cloth infused with N-doped and Co-coated carbon nanofibers as a current collector for ultra-stable lithium-sulfur batteries. Materials Letters, 2019, 255, 126595.	2.6	12

#	Article	IF	CITATIONS
127	Vanadium nitride-decorated lotus root-like NCNFs as 3D current collector for Li-S batteries. Materials Letters, 2019, 236, 240-243.	2.6	12
128	Cu3Ge coated by nitrogen-doped carbon nanorods as advanced sodium-ion battery anodes. Ionics, 2020, 26, 719-726.	2.4	12
129	A Full Li–S Battery with Ultralow Excessive Li Enabled via Lithiophilic and Sulfilic W ₂ C Modulation. Chemistry - A European Journal, 2020, 26, 16057-16065.	3.3	12
130	Influence of the Facets of Bi24O31Br10 Nanobelts and Nanosheets on Their Photocatalytic Properties. Catalysts, 2020, 10, 257.	3.5	12
131	Ordered multiferroic CoFe ₂ O ₄ –Pb(Zr _{0.52} Ti _{0.48})O ₃ coaxial nanotube arrays with enhanced magnetoelectric coupling. RSC Advances, 2017, 7, 29096-29102.	3.6	11
132	Carbon nanotubes/SiC prepared by catalytic chemical vapor deposition as scaffold for improved lithium-sulfur batteries. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	11
133	Microfluidic-Assisted Fabrication of Monodisperse Core–Shell Microcapsules for Pressure-Sensitive Adhesive with Enhanced Performance. Nanomaterials, 2020, 10, 274.	4.1	11
134	Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries. Journal of Materials Science and Technology, 2022, 115, 140-147.	10.7	11
135	Facile Construction of Metalâ€Free g ₃ N ₄ Isotype Heterojunction with Highly Enhanced Visibleâ€ight Photocatalytic Performance. ChemistrySelect, 2017, 2, 6970-6978.	1.5	10
136	The Ternary Heterostructures of BiOBr/Ultrathin g-C3N4/Black Phosphorous Quantum Dot Composites for Photodegradation of Tetracycline. Polymers, 2018, 10, 1118.	4.5	10
137	Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries. Beilstein Journal of Nanotechnology, 2018, 9, 1677-1685.	2.8	10
138	Improving lithium storage capability of ternary Sn-based sulfides by enhancing inactive/active element ratio. Solid State Ionics, 2019, 337, 47-55.	2.7	10
139	High-Stability Ti3C2-QDs/ZnIn2S4/Ti(IV) Flower-like Heterojunction for Boosted Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 542.	4.1	10
140	In Situ Synthesis of All-Solid-State Z-Scheme BiOBr0.310.7/Ag/AgI Photocatalysts with Enhanced Photocatalytic Activity Under Visible Light Irradiation. Nanoscale Research Letters, 2018, 13, 368.	5.7	9
141	Stable Copper Tin Sulfide Nanoflower Modified Carbon Quantum Dots for Improved Supercapacitors. Journal of Chemistry, 2019, 2019, 1-5.	1.9	9
142	The electronic properties tuned by the synergy of polaron and d-orbital in a Co–Sn co-intercalated α-MoO ₃ system. Journal of Materials Chemistry C, 2020, 8, 6536-6541.	5.5	9
143	Interconnected nitrogen-doped carbon nanofibers derived from polypyrrole for high-performance Li/S batteries. Russian Journal of Applied Chemistry, 2016, 89, 1336-1340.	0.5	8
144	Reduced Graphene Oxide Boosted Ultrafine Cu ₂ SnS ₃ Nanoparticles for Highâ€performance Sodium Storage. ChemElectroChem, 2019, 6, 2949-2955.	3.4	8

#	Article	IF	CITATIONS
145	Unusual Mechanism Behind Enhanced Photocatalytic Activity and Surface Passivation of SiC(0001) via Forming Heterostructure with a MoS ₂ Monolayer. Journal of Physical Chemistry C, 2020, 124, 1362-1368.	3.1	7
146	Hematite photoanode modified with inexpensive hole-storage layer for highly efficient solar water oxidation. Nanotechnology, 2020, 31, 455405.	2.6	7
147	Threeâ€dimensionally Ordered Macroâ€porous Metalâ€organic Framework for Highâ€performance Lithiumâ€sulfur Battery. ChemElectroChem, 2022, 9, .	3.4	7
148	Plasmonic refractionâ€induced ultrahigh transparency of highly conducting metallic networks. Laser and Photonics Reviews, 2016, 10, 465-472.	8.7	6
149	Novel Fe ₂ O ₃ /PZT Nanorods for Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting. Energy & Energy & 16927-16935.	5.1	6
150	Extraordinary optical transmission in nano-bridged plasmonic arrays mimicking a stable weakly-connected percolation threshold. Optics Express, 2020, 28, 31425.	3.4	6
151	TiVN composite hollow mesospheres for high-performance supercapacitors. Materials Research Express, 2019, 6, 025801.	1.6	5
152	Modified Nanopillar Arrays for Highly Stable and Efficient Photoelectrochemical Water Splitting. Global Challenges, 2019, 3, 1800027.	3.6	5
153	Synergistic Effects of Ag Nanoparticles/BiV1-xMoxO4 with Enhanced Photocatalytic Activity. Nanoscale Research Letters, 2017, 12, 588.	5.7	4
154	Broadband photoluminescence of silicon nanowires excited by near-infrared continuous wave lasers. Optics and Laser Technology, 2018, 99, 81-85.	4.6	4
155	The fabrication of a 3D current collector with bitter melon-like TiO ₂ –NCNFs for highly stable lithium–sulfur batteries. Nanoscale Advances, 2019, 1, 527-531.	4.6	4
156	Unexpected bowing band evolution in an all-inorganic CsSn _{1â^'x} Pb _x Br ₃ perovskite. RSC Advances, 2020, 10, 26407-26413.	3.6	4
157	Structure modification of Ni-rich layered oxide cathode toward advanced lithium-ion batteries. Journal of Materials Research, 2022, 37, 3250-3268.	2.6	4
158	Flexible Freestanding Carbon Nanofiber-Embedded TiO ₂ Nanoparticles as Anode Material for Sodium-Ion Batteries. Scanning, 2018, 2018, 1-7.	1.5	3
159	Engineering the 3D framework of defective phosphorene-based sulfur cathodes for high-efficiency lithium-sulfur batteries. Electrochimica Acta, 2021, 392, 139025.	5.2	3
160	Enhanced polysulfide redox kinetics by niobium oxynitrides via in-situ adsorptive and catalytic effect in wide temperature range. Nano Research, 2022, 15, 6200-6207.	10.4	3
161	Synthesis of ZnO/Polypyrrole Nanoring Composite as High-Performance Anode Materials for Lithium Ion Batteries. Journal of Nanomaterials, 2019, 2019, 1-8.	2.7	2
162	Copolymerization of urea and murexide for efficient photocatalytic hydrogen evolution and tetracycline degradation. New Journal of Chemistry, 2021, 45, 1977-1983.	2.8	2

XIN WANG

#	Article	IF	CITATIONS
163	Fe-doped Co-N/C as effective electrocatalyst for oxygen reaction. Materials Research Express, 2020, 7, 085002.	1.6	2
164	Preparation of High Purity Crystalline Silicon by Electro-Catalytic Reduction of Sodium Hexafluorosilicate with Sodium below 180°C. PLoS ONE, 2014, 9, e105537.	2.5	1
165	Synthesis of Double-Shelled Co-LDH@rGO Nanocages through a Spray-Drying Process as an Advanced Sulfur Reservoir for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 12623-12630.	5.1	1