Francine E Garrett-Bakelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4679959/publications.pdf

Version: 2024-02-01

42 papers

2,947 citations

471371 17 h-index 454834 30 g-index

43 all docs 43 docs citations

43 times ranked

5613 citing authors

#	Article	IF	Citations
1	The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nature Medicine, 2017, 23, 1369-1376.	15.2	971
2	The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science, 2019, 364,	6.0	576
3	Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nature Medicine, 2016, 22, 792-799.	15.2	322
4	DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nature Medicine, 2016, 22, 1488-1495.	15.2	195
5	Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence. Cancer Discovery, 2021, 11, 1542-1561.	7.7	133
6	Epigenetic Identity in AML Depends on Disruption of Nonpromoter Regulatory Elements and Is Affected by Antagonistic Effects of Mutations in Epigenetic Modifiers. Cancer Discovery, 2017, 7, 868-883.	7.7	101
7	Combination Targeted Therapy to Disrupt Aberrant Oncogenic Signaling and Reverse Epigenetic Dysfunction in <i>IDH2</i> - and <i>TET2</i> - Mutant Acute Myeloid Leukemia. Cancer Discovery, 2017, 7, 494-505.	7.7	94
8	Enhanced Reduced Representation Bisulfite Sequencing for Assessment of DNA Methylation at Base Pair Resolution. Journal of Visualized Experiments, 2015, , e52246.	0.2	89
9	Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell, 2018, 33, 44-59.e8.	7.7	71
10	Temporal Telomere and DNA Damage Responses in the Space Radiation Environment. Cell Reports, 2020, 33, 108435.	2.9	40
11	Multi-omic, Single-Cell, and Biochemical Profiles of Astronauts Guide Pharmacological Strategies for Returning to Gravity. Cell Reports, 2020, 33, 108429.	2.9	37
12	Rational Targeting of Cooperating Layers of the Epigenome Yields Enhanced Therapeutic Efficacy against AML. Cancer Discovery, 2019, 9, 872-889.	7.7	36
13	Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure Development. Cell Reports, 2020, 33, 108448.	2.9	35
14	Cell-free DNA (cfDNA) and Exosome Profiling from a Year-Long Human Spaceflight Reveals Circulating Biomarkers. IScience, 2020, 23, 101844.	1.9	31
15	Clonal Hematopoiesis Before, During, and After Human Spaceflight. Cell Reports, 2020, 33, 108458.	2.9	30
16	Frequent somatic <i>TET2</i> mutations in chronic NK-LGL leukemia with distinct patterns of cytopenias. Blood, 2021, 138, 662-673.	0.6	30
17	DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation. Nature Communications, 2021, 12, 5406.	5.8	29
18	CD97 is a critical regulator of acute myeloid leukemia stem cell function. Journal of Experimental Medicine, 2019, 216, 2362-2377.	4.2	24

#	Article	IF	Citations
19	Mutant $\langle i \rangle$ IDH $\langle j \rangle$: a targetable driver of leukemic phenotypes linking metabolism, epigenetics and transcriptional regulation. Epigenomics, 2016, 8, 945-957.	1.0	21
20	Aid is a key regulator of myeloid/erythroid differentiation and DNA methylation in hematopoietic stem/progenitor cells. Blood, 2017, 129, 1779-1790.	0.6	18
21	Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Science Translational Medicine, 2022, 14, eabb7695.	5.8	13
22	COCOA: coordinate covariation analysis of epigenetic heterogeneity. Genome Biology, 2020, 21, 240.	3.8	10
23	Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia. Blood Reviews, 2022, 55, 100950.	2.8	9
24	Differentiation therapy for IDH1/2 mutant malignancies. Cell Research, 2013, 23, 975-977.	5.7	8
25	An Esrrb and Nanog Cell Fate Regulatory Module Controlled by Feed Forward Loop Interactions. Frontiers in Cell and Developmental Biology, 2021, 9, 630067.	1.8	8
26	Genomic and evolutionary portraits of disease relapse in acute myeloid leukemia. Leukemia, 2021, 35, 2688-2692.	3.3	7
27	CD97 Is a Critical Regulator of Acute Myeloid Leukemia Stem Cell Function. Blood, 2016, 128, 1077-1077.	0.6	3
28	Targeted detection and quantitation of histone modifications from 1,000 cells. PLoS ONE, 2020, 15, e0240829.	1.1	3
29	Divergent Dynamics of Epigenetic and Genetic Heterogeneity in Relapsed Acute Myeloid Leukemia. Blood, 2015, 126, 306-306.	0.6	2
30	Epigenetic Deregulation In Relapsed Acute Myeloid Leukemia. Blood, 2013, 122, 2499-2499.	0.6	1
31	High-Resolution Genomic Methylation Analysis Using Next Generation Sequencing Identifies Loci Associated With Differential Prognosis In Mantle Cell Lymphoma Patients Treated With Bortezomib + DA-EPOCH-R. Blood, 2013, 122, 3760-3760.	0.6	0
32	Conditional Loss of Dnmt3a Results in Myeloproliferation and Liver-Specific Myeloid Expansion. Blood, 2014, 124, 364-364.	0.6	0
33	The Significance of GADD45A Promoter DNA Hypermethylation in AML: Association with IDH1/2 and TET2 Mutation. Blood, 2014, 124, 69-69.	0.6	0
34	Validation of CRISPR targeting for proliferation and cytarabine resistance control genes in the acute myeloid leukemia cell line MOLM-13. BioTechniques, 2022, , .	0.8	0
35	Targeted detection and quantitation of histone modifications from 1,000 cells., 2020, 15, e0240829.		0
36	Targeted detection and quantitation of histone modifications from 1,000 cells., 2020, 15, e0240829.		0

#	Article	IF	CITATIONS
37	Targeted detection and quantitation of histone modifications from 1,000 cells. , 2020, 15, e0240829.		0
38	Targeted detection and quantitation of histone modifications from 1,000 cells., 2020, 15, e0240829.		0
39	Targeted detection and quantitation of histone modifications from 1,000 cells., 2020, 15, e0240829.		O
40	Targeted detection and quantitation of histone modifications from 1,000 cells., 2020, 15, e0240829.		0
41	Targeted detection and quantitation of histone modifications from 1,000 cells., 2020, 15, e0240829.		O
42	Targeted detection and quantitation of histone modifications from 1,000 cells., 2020, 15, e0240829.		O