Gi Doo Cha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4679824/publications.pdf

Version: 2024-02-01

114278 61857 15,228 65 43 63 citations h-index g-index papers 65 65 65 16727 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Epidermal Electronics. Science, 2011, 333, 838-843.	6.0	3,944
2	A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, 2016, $11,566-572$.	15.6	1,394
3	A Physically Transient Form of Silicon Electronics. Science, 2012, 337, 1640-1644.	6.0	1,085
4	Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Science Advances, 2017, 3, e1601314.	4.7	836
5	Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nature Nanotechnology, 2018, 13, 1048-1056.	15.6	695
6	Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6, 7149.	5.8	536
7	Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. ACS Nano, 2015, 9, 6626-6633.	7.3	462
8	High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chemical Society Reviews, 2019, 48, 1566-1595.	18.7	400
9	Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nature Communications, 2017, 8, 1664.	5. 8	381
10	Wearable and Implantable Devices for Cardiovascular Healthcare: from Monitoring to Therapy Based on Flexible and Stretchable Electronics. Advanced Functional Materials, 2019, 29, 1808247.	7.8	345
11	Fabricâ€Based Integrated Energy Devices for Wearable Activity Monitors. Advanced Materials, 2014, 26, 6329-6334.	11.1	311
12	Materialâ€Based Approaches for the Fabrication of Stretchable Electronics. Advanced Materials, 2020, 32, e1902743.	11.1	243
13	Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications. Advanced Materials, 2016, 28, 1176-1207.	11.1	211
14	Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases. ACS Nano, 2015, 9, 5937-5946.	7.3	203
15	Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes. ACS Nano, 2017, 11, 10032-10041.	7.3	197
16	Ultrathin Quantum Dot Display Integrated with Wearable Electronics. Advanced Materials, 2017, 29, 1700217.	11.1	187
17	Highly conductive and elastic nanomembrane for skin electronics. Science, 2021, 373, 1022-1026.	6.0	186
18	Cephalopodâ€Inspired Miniaturized Suction Cups for Smart Medical Skin. Advanced Healthcare Materials, 2016, 5, 80-87.	3.9	175

#	Article	IF	CITATIONS
19	An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nature Communications, 2015, 6, 10059.	5.8	159
20	Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, 1703279.	11.1	157
21	Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System. Advanced Functional Materials, 2015, 25, 7109-7118.	7.8	155
22	Ultraâ∈Wideband Multiâ€Dyeâ€Sensitized Upconverting Nanoparticles for Information Security Application. Advanced Materials, 2017, 29, 1603169.	11,1	153
23	Colloidal Synthesis of Uniformâ€Sized Molybdenum Disulfide Nanosheets for Waferâ€Scale Flexible Nonvolatile Memory. Advanced Materials, 2016, 28, 9326-9332.	11.1	151
24	Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Advanced Functional Materials, 2017, 27, 1605286.	7.8	151
25	Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nature Communications, 2019, 10, 5205.	5.8	148
26	Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Science Advances, 2021, 7, .	4.7	144
27	Multifunctional Wearable System that Integrates Sweatâ€Based Sensing and Vitalâ€Sign Monitoring to Estimate Preâ€Postâ€Exercise Glucose Levels. Advanced Functional Materials, 2018, 28, 1805754.	7.8	143
28	Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials. Accounts of Chemical Research, 2019, 52, 73-81.	7.6	143
29	A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Science Advances, 2016, 2, e1501101.	4.7	139
30	Stretchable Carbon Nanotube Charge-Trap Floating-Gate Memory and Logic Devices for Wearable Electronics. ACS Nano, 2015, 9, 5585-5593.	7.3	124
31	Stretchable and Transparent Biointerface Using Cell‧heet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle. Advanced Functional Materials, 2016, 26, 3207-3217.	7.8	123
32	Stretchable Electrode Based on Laterally Combed Carbon Nanotubes for Wearable Energy Harvesting and Storage Devices. Advanced Functional Materials, 2017, 27, 1704353.	7.8	110
33	Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Science Advances, 2021, 7, .	4.7	107
34	The quest for miniaturized soft bioelectronic devices. Nature Biomedical Engineering, 2017, $1, .$	11.6	103
35	Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Materials, 2019, 7, .	2.2	97
36	Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 359-391.	3.3	81

#	Article	IF	Citations
37	Nanomaterials for bioelectronics and integrated medical systems. Korean Journal of Chemical Engineering, 2018, 35, 1-11.	1.2	76
38	Wearable Fall Detector using Integrated Sensors and Energy Devices. Scientific Reports, 2015, 5, 17081.	1.6	74
39	Multifunctional Cell-Culture Platform for Aligned Cell Sheet Monitoring, Transfer Printing, and Therapy. ACS Nano, 2015, 9, 2677-2688.	7.3	72
40	Soft Bioelectronics Based on Nanomaterials. Chemical Reviews, 2022, 122, 5068-5143.	23.0	72
41	Advances in drug delivery technology for the treatment of glioblastoma multiforme. Journal of Controlled Release, 2020, 328, 350-367.	4.8	58
42	Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites. Small, 2020, 16, e1906270.	5.2	55
43	Bioâ€Inspired Artificial Vision and Neuromorphic Image Processing Devices. Advanced Materials Technologies, 2022, 7, 2100144.	3.0	53
44	Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale, 2020, 12, 10456-10473.	2.8	52
45	Multifunctional Injectable Hydrogel for <i>In Vivo</i> Diagnostic and Therapeutic Applications. ACS Nano, 2022, 16, 554-567.	7.3	49
46	Stretchable Lowâ€Impedance Nanocomposite Comprised of Ag–Au Core–Shell Nanowires and Pt Black for Epicardial Recording and Stimulation. Advanced Materials Technologies, 2020, 5, 1900768.	3.0	43
47	Localized Delivery of Theranostic Nanoparticles and Highâ€Energy Photons using Microneedlesâ€onâ€Bioelectronics. Advanced Materials, 2021, 33, e2100425.	11.1	43
48	Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nature Nanotechnology, 2022, 17, 849-856.	15.6	42
49	Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Advanced Healthcare Materials, 2021, 10, e2100614.	3.9	41
50	Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 2021, 10, e2002105.	3.9	36
51	Sensors in heart-on-a-chip: A review on recent progress. Talanta, 2020, 219, 121269.	2.9	34
52	Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology, 2019, 30, 132001.	1.3	32
53	Adaptive Selfâ€Organization of Nanomaterials Enables Strainâ€Insensitive Resistance of Stretchable Metallic Nanocomposites. Advanced Materials, 2022, 34, e2200980.	11.1	30
54	Stretchable conductive nanocomposites and their applications in wearable devices. Applied Physics Reviews, 2022, 9, .	5 . 5	27

#	Article	IF	CITATIONS
55	Soft Implantable Bioelectronics. , 2021, 3, 1528-1540.		24
56	Materials and design strategies for stretchable electroluminescent devices. Nanoscale Horizons, 2022, 7, 801-821.	4.1	22
57	Nanoscale Materials and Deformable Device Designs for Bioinspired and Biointegrated Electronics. Accounts of Materials Research, 2021, 2, 266-281.	5.9	18
58	Large scale and integrated platform for digital mass culture of anchorage dependent cells. Nature Communications, 2019, 10, 4824.	5.8	17
59	Deformable inorganic semiconductor. Nature Materials, 2018, 17, 388-389.	13.3	16
60	Flexible and biodegradable electronic implants for diagnosis and treatment of brain diseases. Current Opinion in Biotechnology, 2021, 72, 13-21.	3.3	16
61	Facile and Scalable Synthesis of Whiskered Gold Nanosheets for Stretchable, Conductive, and Biocompatible Nanocomposites. ACS Nano, 2022, 16, 10431-10442.	7.3	14
62	Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity-time symmetry. Science Advances, 2022, 8, .	4.7	13
63	Self-assembly for electronics. MRS Bulletin, 2020, 45, 807-814.	1.7	10
64	Bio-Inspired Electronic Eyes and Synaptic Photodetectors for Mobile Artificial Vision., 2022, 1, 76-87.		8
65	Toughness and elasticity from phase separation. Nature Materials, 2022, 21, 266-268.	13.3	2