Alfred Stett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4679737/publications.pdf

Version: 2024-02-01

430874 526287 2,985 33 18 27 h-index citations g-index papers 35 35 35 2392 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Subretinal electronic chips allow blind patients to read letters and combine them to words. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1489-1497.	2.6	717
2	Biological application of microelectrode arrays in drug discovery and basic research. Analytical and Bioanalytical Chemistry, 2003, 377, 486-495.	3.7	408
3	Can subretinal microphotodiodes successfully replace degenerated photoreceptors?. Vision Research, 1999, 39, 2555-2567.	1.4	285
4	Electrical multisite stimulation of the isolated chicken retina. Vision Research, 2000, 40, 1785-1795.	1.4	271
5	The Development of Subretinal Microphotodiodes for Replacement of Degenerated Photoreceptors. Ophthalmic Research, 1997, 29, 269-280.	1.9	219
6	Silicon-Neuron Junction: Capacitive Stimulation of an Individual Neuron on a Silicon Chip. Physical Review Letters, 1995, 75, 1670-1673.	7.8	169
7	PEDOT–CNT Composite Microelectrodes for Recording and Electrostimulation Applications: Fabrication, Morphology, and Electrical Properties. Frontiers in Neuroengineering, 2012, 5, 8.	4.8	152
8	Spatial Resolution and Perception of Patterns Mediated by a Subretinal 16-Electrode Array in Patients Blinded by Hereditary Retinal Dystrophies., 2011, 52, 5995.		143
9	Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefe's Archive for Clinical and Experimental Ophthalmology, 2004, 242, 587-596.	1.9	77
10	Retinal charge sensitivity and spatial discrimination obtainable by subretinal implants: key lessons learned from isolated chicken retina. Journal of Neural Engineering, 2007, 4, S7-S16.	3.5	57
11	A CMOS-based sensor array for in-vitro neural tissue interfacing with 4225 recording sites and 1024 stimulation sites. , 2014, , .		52
12	Patch-clamping of primary cardiac cells with micro-openings in polyimide films. Medical and Biological Engineering and Computing, 2003, 41, 233-240.	2.8	48
13	Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina. Brain Research Bulletin, 2009, 79, 15-25.	3.0	45
14	Two-way silicon-neuron interface by electrical induction. Physical Review E, 1997, 55, 1779-1782.	2.1	39
15	Application of PEDOTâ€CNT Microelectrodes for Neurotransmitter Sensing. Electroanalysis, 2014, 26, 548-555.	2.9	31
16	On Micro-Electrode Array Revival: Its Development, Sophistication of Recording, and Stimulation., 2006,, 24-37.		24
17	Restoration of useful vision up to letter recognition capabilities using subretinal microphotodiodes. , 2010, 2010, 5919-22.		24
18	New Perspectives on Neuroengineering and Neurotechnologies: NSF-DFG Workshop Report. IEEE Transactions on Biomedical Engineering, 2016, 63, 1354-1367.	4.2	23

#	Article	IF	CITATIONS
19	Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat. Journal of Neuroscience Methods, 2008, 172, 255-262.	2.5	20
20	A 1600-pixel Subretinal Chip with DC-free Terminals and $\hat{A}\pm2V$ Supply Optimized for Long Lifetime and High Stimulation Efficiency. , 2008, , .		20
21	Electric Field Stimulation of Bipolar Cells in a Degenerated Retina—A Theoretical Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 1-10.	4.9	20
22	CYTOCENTERING: a novel technique enabling automated cell-by-cell patch clamping with the CYTOPATCH chip. Receptors and Channels, 2003, 9, 59-66.	1.1	17
23	Evaluation of adhesion promoters for Parylene C on gold metallization. Current Directions in Biomedical Engineering, 2015, 1, 493-497.	0.4	11
24	Chemical Stimulation of Adherent Cells by Localized Application of Acetylcholine from a Microfluidic System. Frontiers in Neuroengineering, 2010, 3, 113.	4.8	9
25	Examination of dielectric strength of thin Parylene C films under various conditions. Current Directions in Biomedical Engineering, 2016, 2, 39-41.	0.4	9
26	Localized Functional Chemical Stimulation of TE 671 Cells Cultured on Nanoporous Membrane by Calcein and Acetylcholine. Biophysical Journal, 2007, 92, L04-L06.	0.5	7
27	Plasma enhanced chemical vapor deposition grown carbon nanotubes from ferritin catalyst for neural stimulation microelectrodes. Microelectronic Engineering, 2010, 87, 734-737.	2.4	6
28	Plasma treatment on novel carbon fiber reinforced PEEK cages to enhance bioactivity. Current Directions in Biomedical Engineering, 2016, 2, 569-572.	0.4	6
29	Sputtered Iridium Oxide as Electrode Material for Subretinal Stimulation. Sensors and Materials, 2020, 32, 2903.	0.5	6
30	The Retinasensor: An In Vitro Tool to Study Drug Effects on Retinal Signaling., 2006,, 321-331.		3
31	High voltage insulation properties of DLC-Parylene multilayer films for microsurgery instruments. Microelectronic Engineering, 2016, 153, 126-131.	2.4	3
32	Carbon nanotubes grown on polyimide by chemical vapour deposition. , 2012, , .		2
33	Development and characterization of a needle-type microelectrode array for stimulation and recording of neuronal activity. Microelectronic Engineering, 2012, 98, 453-457.	2.4	0