
Francesco Greco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4679396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brownian simulations of a network of reptating primitive chains. Journal of Chemical Physics, 2001, 115, 4387-4394.	3.0	268
2	Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab on A Chip, 2012, 12, 1638.	6.0	182
3	Entanglement molecular weight and frequency response of sliplink networks. Journal of Chemical Physics, 2003, 119, 6925-6930.	3.0	125
4	Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel. Lab on A Chip, 2013, 13, 4263.	6.0	98
5	Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions. Lab on A Chip, 2013, 13, 2802.	6.0	88
6	Drop deformation for non-Newtonian fluids in slow flows. Journal of Non-Newtonian Fluid Mechanics, 2002, 107, 111-131.	2.4	83
7	Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results. Journal of Rheology, 2008, 52, 1331-1346.	2.6	77
8	Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions â€~at a glance'. Scientific Reports, 2015, 5, 8831.	3.3	71
9	Ellipsoidal drop model for single drop dynamics with non-Newtonian fluids. Journal of Rheology, 2004, 48, 83-100.	2.6	68
10	Rheometry-on-a-chip: measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows. Lab on A Chip, 2015, 15, 783-792.	6.0	64
11	Molecular simulations of the long-time behaviour of entangled polymeric liquids by the primitive chain network model. Modelling and Simulation in Materials Science and Engineering, 2004, 12, S91-S100.	2.0	59
12	Quantitative comparison of primitive chain network simulations with literature data of linear viscoelasticity for polymer melts. Journal of Non-Newtonian Fluid Mechanics, 2008, 149, 87-92.	2.4	58
13	Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluidics and Nanofluidics, 2015, 19, 95-104.	2.2	57
14	Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part II. Experimental results. Journal of Rheology, 2009, 53, 459-480.	2.6	50
15	Comparison among Slip-Link Simulations of Bidisperse Linear Polymer Melts. Macromolecules, 2008, 41, 8275-8280.	4.8	48
16	Drop shape under slow steady shear flow and during relaxation. Experimental results and comparison with theory. Rheologica Acta, 2001, 40, 176-184.	2.4	47
17	Simple strain measure for entangled polymers. Journal of Rheology, 2000, 44, 845-854.	2.6	45
18	Fluid Viscoelasticity Drives Self-Assembly of Particle Trains in a Straight Microfluidic Channel. Physical Review Applied, 2018, 10, .	3.8	38

FRANCESCO GRECO

#	Article	IF	CITATIONS
19	Rapid Fickian Yet Non-Gaussian Diffusion after Subdiffusion. Physical Review Letters, 2021, 126, 158003.	7.8	37
20	Possible role of force balance on entanglements. Macromolecular Symposia, 2000, 158, 57-64.	0.7	33
21	Primitive chain network simulations for branched polymers. Rheologica Acta, 2006, 46, 297-303.	2.4	33
22	Rheology of dilute and semidilute noncolloidal hard sphere suspensions. Journal of Rheology, 2008, 52, 1369-1384.	2.6	33
23	Structure of entangled polymer network from primitive chain network simulations. Journal of Chemical Physics, 2010, 132, 134902.	3.0	33
24	Statics, linear, and nonlinear dynamics of entangled polystyrene melts simulated through the primitive chain network model. Journal of Chemical Physics, 2008, 128, 154901.	3.0	32
25	Integral and differential constitutive equations for entangled polymers with simple versions of CCR and force balance on entanglements. Rheologica Acta, 2001, 40, 98-103.	2.4	31
26	Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow. Computers and Fluids, 2015, 107, 214-223.	2.5	26
27	Start-up and retraction dynamics of a Newtonian drop in a viscoelastic matrix under simple shear flow. Journal of Non-Newtonian Fluid Mechanics, 2006, 134, 27-32.	2.4	25
28	Fickian Non-Gaussian Diffusion in Glass-Forming Liquids. Physical Review Letters, 2022, 128, 168001.	7.8	23
29	Second-order theory for the deformation of a Newtonian drop in a stationary flow field. Physics of Fluids, 2002, 14, 946-954.	4.0	20
30	Highly entangled polymer primitive chain network simulations based on dynamic tube dilation. Journal of Chemical Physics, 2004, 121, 12650.	3.0	19
31	Entangled polymer orientation and stretch under large step shear deformations in primitive chain network simulations. Rheologica Acta, 2008, 47, 591-599.	2.4	19
32	Primitive chain network model for block copolymers. Journal of Non-Crystalline Solids, 2006, 352, 5001-5007.	3.1	18
33	Stress-relaxation behavior of a physical gel: Evidence of co-occurrence of structural relaxation and water diffusion in ionic alginate gels. European Polymer Journal, 2013, 49, 3929-3936.	5.4	18
34	Mechanical properties of end-crosslinked entangled polymer networks using sliplink Brownian dynamics simulations. Rheologica Acta, 2006, 46, 95-109.	2.4	17
35	Primitive chain network simulations for entangled DNA solutions. Journal of Chemical Physics, 2009, 131, 114906.	3.0	17
36	Primitive Chain Network Simulations on Dielectric Relaxation of Linear Polymers under Shear Flow. Nihon Reoroji Gakkaishi, 2004, 32, 197-202.	1.0	16

FRANCESCO GRECO

#	Article	IF	CITATIONS
37	Primitive Chain Network Simulations of Damping Functions for Shear, Uniaxial, Biaxial and Planar Deformations. Nihon Reoroji Gakkaishi, 2007, 35, 73-77.	1.0	16
38	Analysis of start-up dynamics of a single drop through an ellipsoidal drop model for non-Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 2005, 126, 145-151.	2.4	15
39	Is microrheometry affected by channel deformation?. Biomicrofluidics, 2016, 10, 043501.	2.4	15
40	Influence of wall heterogeneity on nanoscopically confined polymers. Physical Chemistry Chemical Physics, 2019, 21, 772-779.	2.8	15
41	Nonlinear Stress Relaxation of Molten Polymers:Â Experimental Verification of a New Theoretical Approach. Macromolecules, 2006, 39, 5931-5938.	4.8	14
42	Numerical simulations of the dynamics of a slippery particle in Newtonian and viscoelastic fluids subjected to shear and Poiseuille flows. Journal of Non-Newtonian Fluid Mechanics, 2016, 228, 46-54.	2.4	13
43	A model-system of Fickian yet non-Gaussian diffusion: light patterns in place of complex matter. Soft Matter, 2022, 18, 351-364.	2.7	13
44	Entangled Polymeric Liquids:Â Nonstandard Statistical Thermodynamics of a Subchain between Entanglement Points and a New Calculation of the Strain Measure Tensor. Macromolecules, 2004, 37, 10079-10088.	4.8	12
45	Rheology of a dilute viscoelastic suspension of spheroids in unconfined shear flow. Rheologica Acta, 2015, 54, 915-928.	2.4	11
46	Analysis of linear viscoelastic behaviour of alginate gels: effects of inner relaxation, water diffusion, and syneresis. Soft Matter, 2015, 11, 6045-6054.	2.7	10
47	Tailoring Chitosan/LTA Zeolite Hybrid Aerogels for Anionic and Cationic Dye Adsorption. International Journal of Molecular Sciences, 2021, 22, 5535.	4.1	10
48	Single Drop Dynamics under Shearing Flow in Systems with a Viscoelastic Phase. Macromolecular Symposia, 2005, 228, 31-40.	0.7	8
49	Analysis of the aging effects on the viscoelasticity of alginate gels. Soft Matter, 2016, 12, 8726-8735.	2.7	7
50	Anomalous Aging and Stress Relaxation in Macromolecular Physical Gels: The Case of Strontium Alginate. Macromolecules, 2020, 53, 649-657.	4.8	7
51	Prediction of the effects of constitutive viscoelasticity on stress-diffusion coupling in gels. Journal of Chemical Physics, 2012, 136, 134904.	3.0	6
52	Concentrated suspensions of Brownian beads in water: dynamic heterogeneities through a simple experimental technique. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	6
53	On the inverse quenching technique applied to gelatin solutions. Journal of Rheology, 2021, 65, 1081-1088.	2.6	5
54	Breakdown of the Stokes–Einstein relation in supercooled liquids: A cage-jump perspective. Journal of Chemical Physics, 2021, 155, 114503.	3.0	5

FRANCESCO GRECO

#	Article	IF	CITATIONS
55	Comparing Microscopic and Macroscopic Dynamics in a Paradigmatic Model of Glass-Forming Molecular Liquid. International Journal of Molecular Sciences, 2022, 23, 3556.	4.1	4
56	Rheo-optical determination of the interfacial tension in a dispersed blend. Macromolecular Symposia, 2003, 198, 53-68.	0.7	3
57	Primitive Chain Network Simulations of Conformational Relaxation for Individual Molecules in the Entangled State. Nihon Reoroji Gakkaishi, 2008, 36, 181-185.	1.0	3
58	Primitive Chain Network Simulations of Conformational Relaxation for Individual Molecules in the Entangled State. II. Retraction from Stretched States Nihon Reoroji Gakkaishi, 2009, 37, 65-68.	1.0	3
59	Rheology of a Dilute Suspension of Spheres in a Viscoelastic Fluid Under Large Amplitude Oscillations. Journal of Computational and Theoretical Nanoscience, 2010, 7, 780-786.	0.4	2
60	Multiscale heterogeneous dynamics in two-dimensional glassy colloids. Journal of Chemical Physics, 2022, 156, 164906.	3.0	2
61	New strain measure tensor for entangled polymeric liquids. Journal of Rheology, 2003, 47, 235-246.	2.6	1
62	Primitive Chain Network Model for Entangled Polymer Blends. AIP Conference Proceedings, 2004, , .	0.4	0
63	Primitive Chain Network Simulations for Particle Dispersed Polymers. AIP Conference Proceedings, 2008, , .	0.4	0
64	Rotation of a Sphere in a Viscoelastic Fluid under Flow. AIP Conference Proceedings, 2008, , .	0.4	0
65	Glasses and gels: a crossroad of molecular liquids, polymers and colloids. Journal of Physics Condensed Matter, 2022, 34, 090401.	1.8	0

66 Rheo-Engineered Microfluidics @ UNINA. , 2022, 3, 100024.

0