Ramaroson Andriantsitohaina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4679354/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
2	Nitric oxide production and endotheliumâ€dependent vasorelaxation induced by wine polyphenols in rat aorta. British Journal of Pharmacology, 1997, 120, 1053-1058.	5.4	273
3	Shed membrane microparticles from circulating and vascular cells in regulating vascular function. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1004-H1009.	3.2	269
4	Natural Dietary Polyphenolic Compounds Cause Endothelium-Dependent Vasorelaxation in Rat Thoracic Aorta. Journal of Nutrition, 1998, 128, 2324-2333.	2.9	251
5	Endothelial Dysfunction Caused by Circulating Microparticles from Patients with Metabolic Syndrome. American Journal of Pathology, 2008, 173, 1210-1219.	3.8	248
6	Shed Membrane Particles From T Lymphocytes Impair Endothelial Function and Regulate Endothelial Protein Expression. Circulation, 2004, 109, 1653-1659.	1.6	229
7	Wine Polyphenols Decrease Blood Pressure, Improve NO Vasodilatation, and Induce Gene Expression. Hypertension, 2001, 38, 159-165.	2.7	219
8	Reactive Nitrogen Species: Molecular Mechanisms and Potential Significance in Health and Disease. Antioxidants and Redox Signaling, 2009, 11, 669-702.	5.4	205
9	Oxidative Stress and Metabolic Pathologies: From an Adipocentric Point of View. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-18.	4.0	204
10	Characterisation of adipocyteâ€derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. Journal of Extracellular Vesicles, 2017, 6, 1305677.	12.2	173
11	Endothelial function and cardiovascular disease: Effects of quercetin and wine polyphenols. Free Radical Research, 2006, 40, 1054-1065.	3.3	170
12	Circulating Microparticles from Patients with Septic Shock Exert Protective Role in Vascular Function. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1148-1155.	5.6	170
13	Molecular mechanisms of the cardiovascular protective effects of polyphenols. British Journal of Nutrition, 2012, 108, 1532-1549.	2.3	164
14	Microparticles in Angiogenesis. Circulation Research, 2011, 109, 110-119.	4.5	158
15	Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H942-H948.	3.2	156
16	Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB Journal, 2007, 21, 2735-2741.	0.5	145
17	Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. British Journal of Pharmacology, 2002, 135, 1579-1587.	5.4	125
18	Ablation of Serotonin 5-HT _{2B} Receptors in Mice Leads to Abnormal Cardiac Structure and Function. Circulation, 2001, 103, 2973-2979.	1.6	122

#	Article	IF	CITATIONS
19	Extracellular Vesicles in Metabolic Syndrome. Circulation Research, 2017, 120, 1674-1686.	4.5	122
20	Nitrite–nitric oxide control of mitochondrial respiration at the frontier of anoxia. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1268-1275.	1.0	121
21	Mechanism of Endothelial Nitric Oxide-Dependent Vasorelaxation Induced by Wine Polyphenols in Rat Thoracic Aorta. Journal of Cardiovascular Pharmacology, 1999, 33, 248-254.	1.9	119
22	Anticancer Properties of Flavonoids: Roles in Various Stages of Carcinogenesis. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2011, 9, 62-77.	1.0	118
23	Vascular bed heterogeneity in ageâ€related endothelial dysfunction with respect to NO and eicosanoids. British Journal of Pharmacology, 2000, 131, 303-311.	5.4	117
24	Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. Journal of Hypertension, 2004, 22, 1551-1559.	0.5	108
25	Microparticles: targets and tools in cardiovascular disease. Trends in Pharmacological Sciences, 2011, 32, 659-665.	8.7	106
26	Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis, 2009, 30, 580-588.	2.8	103
27	Red wine polyphenols cause endothelium-dependent EDHF-mediated relaxations in porcine coronary arteries via a redox-sensitive mechanism. Biochemical and Biophysical Research Communications, 2003, 310, 371-377.	2.1	102
28	Estrogen Receptor Alpha as a Key Target of Red Wine Polyphenols Action on the Endothelium. PLoS ONE, 2010, 5, e8554.	2.5	102
29	Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats*. Critical Care Medicine, 2009, 37, 2045-2050.	0.9	99
30	Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress*. Critical Care Medicine, 2011, 39, 1739-1748.	0.9	99
31	Red Wine Polyphenols Prevent Metabolic and Cardiovascular Alterations Associated with Obesity in Zucker Fatty Rats (Fa/Fa). PLoS ONE, 2009, 4, e5557.	2.5	97
32	Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis <i>via</i> nitric oxide pathway and regulation of calcium homeostasis. British Journal of Pharmacology, 2003, 139, 1095-1102.	5.4	94
33	Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxidants and Redox Signaling, 2019, 30, 813-856.	5.4	92
34	Delphinidin inhibits endothelial cell proliferation and cell cycle progression through a transient activation of ERK-1/-2. Biochemical Pharmacology, 2003, 65, 669-675.	4.4	90
35	Red Wine Polyphenolic Compounds Inhibit Vascular Endothelial Growth Factor Expression in Vascular Smooth Muscle Cells by Preventing the Activation of the p38 Mitogen-Activated Protein Kinase Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1001-1007.	2.4	89
36	Endothelial Dysfunction and Circulating Microparticles from Patients with Obstructive Sleep Apnea. American Journal of Pathology, 2010, 177, 974-983.	3.8	88

#	Article	IF	CITATIONS
37	Microparticles Carrying Sonic Hedgehog Favor Neovascularization through the Activation of Nitric Oxide Pathway in Mice. PLoS ONE, 2010, 5, e12688.	2.5	88
38	Shed Membrane Particles from Preeclamptic Women Generate Vascular Wall Inflammation and Blunt Vascular Contractility. American Journal of Pathology, 2006, 169, 1473-1483.	3.8	87
39	Circulating Microparticles from Pulmonary Hypertensive Rats Induce Endothelial Dysfunction. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 261-268.	5.6	87
40	Phosphatidylinositol 3-Kinase and Xanthine Oxidase Regulate Nitric Oxide and Reactive Oxygen Species Productions by Apoptotic Lymphocyte Microparticles in Endothelial Cells. Journal of Immunology, 2008, 180, 5028-5035.	0.8	84
41	Activated protein C improves lipopolysaccharide-induced cardiovascular dysfunction by decreasing tissular inflammation and oxidative stress*. Critical Care Medicine, 2009, 37, 246-255.	0.9	81
42	Involvement of cyclin-dependent pathway in the inhibitory effect of delphinidin on angiogenesis. Cardiovascular Research, 2003, 59, 479-487.	3.8	80
43	Age-Related Endothelial Dysfunction. Drugs and Aging, 2003, 20, 527-550.	2.7	73
44	Upregulation of Proinflammatory Proteins Through NF-ήB Pathway by Shed Membrane Microparticles Results in Vascular Hyporeactivity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2522-2527.	2.4	73
45	Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses antiâ€angiogenic. FASEB Journal, 2007, 21, 3511-3521.	0.5	71
46	Microparticles are vectors of paradoxical information in vascular cells including the endothelium: role in health and diseases. Pharmacological Reports, 2008, 60, 75-84.	3.3	71
47	Activation of the peroxisome proliferator-activated receptor alpha protects against myocardial ischaemic injury and improves endothelial vasodilatation. BMC Pharmacology, 2002, 2, 10.	0.4	70
48	Human serum albumin improves endothelial dysfunction and survival during experimental endotoxemia: Concentration-dependent properties*. Critical Care Medicine, 2011, 39, 1414-1422.	0.9	68
49	Human Serum Albumin Improves Arterial Dysfunction during Early Resuscitation in Mouse Endotoxic Model via Reduced Oxidative and Nitrosative Stresses. American Journal of Pathology, 2007, 171, 1753-1761.	3.8	66
50	Extracellular vesicles: New players in cardiovascular diseases. International Journal of Biochemistry and Cell Biology, 2014, 50, 24-28.	2.8	65
51	Altered Contractile Response due to Increased β3-Adrenoceptor Stimulation in Diabetic Cardiomyopathy. Anesthesiology, 2007, 107, 452-460.	2.5	63
52	Improvement of ageâ€related endothelial dysfunction by simvastatin: effect on NO and COX pathways. British Journal of Pharmacology, 2005, 146, 1130-1138.	5.4	55
53	Characterization of endothelial factors involved in the vasodilatory effect of simvastatin in aorta and small mesenteric artery of the rat. British Journal of Pharmacology, 2000, 131, 1179-1187.	5.4	54
54	Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation. Journal of Physiology and Biochemistry, 2011, 67, 285-296.	3.0	54

#	Article	IF	CITATIONS
55	Chronic Treatment with Red Wine Polyphenol Compounds Mediates Neuroprotection in a Rat Model of Ischemic Cerebral Stroke3. Journal of Nutrition, 2008, 138, 519-525.	2.9	53
56	Deletion of peroxisome proliferator-activated receptor- \hat{I} + induces an alteration of cardiac functions. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H161-H166.	3.2	50
57	Microparticles from Patients with Metabolic Syndrome Induce Vascular Hypo-Reactivity via Fas/Fas-Ligand Pathway in Mice. PLoS ONE, 2011, 6, e27809.	2.5	50
58	Provinol Prevents CsA-induced Nephrotoxicity by Reducing Reactive Oxygen Species, iNOS, and NF-kB Expression. Journal of Histochemistry and Cytochemistry, 2005, 53, 1459-1468.	2.5	49
59	Paradoxical Role of Angiotensin II Type 2 Receptors in Resistance Arteries of Old Rats. Hypertension, 2007, 50, 96-102.	2.7	49
60	Potentiation by neuropeptide Y of vasoconstriction in rat resistance arteries. British Journal of Pharmacology, 1988, 95, 419-428.	5.4	48
61	Activation of Sonic hedgehog signaling in ventricular cardiomyocytes exerts cardioprotection against ischemia reperfusion injuries. Scientific Reports, 2015, 5, 7983.	3.3	48
62	Involvement of protein kinase C, tyrosine kinases, and Rho kinase in Ca2+ handling of human small arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1228-H1238.	3.2	47
63	In vitro vasorelaxation mechanisms of bioactive compounds extracted from Hibiscus sabdariffa on rat thoracic aorta. Nutrition and Metabolism, 2009, 6, 45.	3.0	47
64	PPARα Is Essential for Microparticle-Induced Differentiation of Mouse Bone Marrow-Derived Endothelial Progenitor Cells and Angiogenesis. PLoS ONE, 2010, 5, e12392.	2.5	47
65	Recent Insights in the Paracrine Modulation of Cardiomyocyte Contractility by Cardiac Endothelial Cells. BioMed Research International, 2014, 2014, 1-10.	1.9	47
66	Internalization and induction of antioxidant messages by microvesicles contribute to the antiapoptotic effects on human endothelial cells. Free Radical Biology and Medicine, 2012, 53, 2159-2170.	2.9	45
67	Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nature Metabolism, 2021, 3, 1415-1431.	11.9	45
68	The anti-ageing molecule sirt1 mediates beneficial effects of cardiac rehabilitation. Immunity and Ageing, 2017, 14, 7.	4.2	44
69	Acute treatment with red wine polyphenols protects from ischemia-induced excitotoxicity, energy failure and oxidative stress in rats. Brain Research, 2008, 1239, 226-234.	2.2	43
70	Temporal Cross Talk Between Endoplasmic Reticulum and Mitochondria Regulates Oxidative Stress and Mediates Microparticle-Induced Endothelial Dysfunction. Antioxidants and Redox Signaling, 2017, 26, 15-27.	5.4	42
71	Microvesicles: Intercellular Vectors of Biological Messages. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2011, 11, 88-94.	3.4	42
72	Microparticle release in remote ischemic conditioning mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H871-H877.	3.2	41

#	Article	IF	CITATIONS
73	Phenotyping of circulating extracellular vesicles (EVs) in obesity identifies large EVs as functional conveyors of Macrophage Migration Inhibitory Factor. Molecular Metabolism, 2018, 18, 134-142.	6.5	40
74	Alteration by lipopolysaccharide of the relationship between intracellular calcium levels and contraction in rat mesenteric artery. British Journal of Pharmacology, 1996, 118, 1218-1222.	5.4	39
75	Increased Oxidative Stress Induces Apoptosis in Human Cystic Fibrosis Cells. PLoS ONE, 2011, 6, e24880.	2.5	39
76	Sleep apnoea and endothelial dysfunction: An individual patient data meta-analysis. Sleep Medicine Reviews, 2020, 52, 101309.	8.5	38
77	Microparticles and vascular dysfunction in obstructive sleep apnoea. European Respiratory Journal, 2014, 44, 207-216.	6.7	37
78	Circulating Microparticles from Crohn's Disease Patients Cause Endothelial and Vascular Dysfunctions. PLoS ONE, 2013, 8, e73088.	2.5	37
79	Microparticles from apoptotic monocytes enhance nitrosative stress in human endothelial cells. Fundamental and Clinical Pharmacology, 2011, 25, 653-660.	1.9	36
80	Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. , 2018, 191, 92-122.		36
81	Involvement of β3-Adrenoceptor in Altered β-Adrenergic Response in Senescent Heart. Anesthesiology, 2008, 109, 1045-1053.	2.5	36
82	Characterisation of cyclic nucleotide phosphodiesterases from rat mesenteric artery. European Journal of Pharmacology, 1991, 208, 85-87.	2.6	35
83	Heterogeneity of endothelium-dependent vasorelaxation in conductance and resistance arteries from Lyon normotensive and hypertensive rats. Journal of Hypertension, 2003, 21, 1505-1512.	0.5	35
84	Microparticles as Regulators of Cardiovascular Inflammation. Trends in Cardiovascular Medicine, 2012, 22, 88-92.	4.9	34
85	Propionyl-L-carnitine Corrects Metabolic and Cardiovascular Alterations in Diet-Induced Obese Mice and Improves Liver Respiratory Chain Activity. PLoS ONE, 2012, 7, e34268.	2.5	34
86	Systems biology of antioxidants. Clinical Science, 2012, 123, 173-192.	4.3	34
87	Perinatal Hypercholesterolemia Exacerbates Atherosclerosis Lesions in Offspring by Altering Metabolism of Trimethylamine-N-Oxide and Bile Acids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2053-2063.	2.4	33
88	Microparticles as Biomarkers of Vascular Dysfunction in Metabolic Syndrome and its Individual Components. Current Vascular Pharmacology, 2014, 12, 483-492.	1.7	33
89	Protection Against Endotoxic Shock as a Consequence of Reduced Nitrosative Stress in MLCK210-Null Mice. American Journal of Pathology, 2007, 170, 439-446.	3.8	32
90	Therapeutic potential of plasma membrane-derived microparticles. Pharmacological Reports, 2009, 61, 49-57.	3.3	31

#	Article	IF	CITATIONS
91	Increased Microparticle Production and Impaired Microvascular Endothelial Function in Aldosterone-Salt-Treated Rats: Protective Effects of Polyphenols. PLoS ONE, 2012, 7, e39235.	2.5	29
92	Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways. International Journal of Biochemistry and Cell Biology, 2013, 45, 783-791.	2.8	29
93	Delphinidin inhibits VEGF induced-mitochondrial biogenesis and Akt activation in endothelial cells. International Journal of Biochemistry and Cell Biology, 2014, 53, 9-14.	2.8	29
94	Involvement of thromboxane A ₂ in the endotheliumâ€dependent contractions induced by myricetin in rat isolated aorta. British Journal of Pharmacology, 1999, 127, 1539-1544.	5.4	28
95	Wine polyphenols induce hypotension, and decrease cardiac reactivity and infarct size in rats: involvement of nitric oxide. British Journal of Pharmacology, 2004, 142, 671-678.	5.4	28
96	Microparticles from preeclamptic women induce vascular hyporeactivity in vessels from pregnant mice through an overproduction of NO. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H520-H525.	3.2	27
97	Sonic Hedgehog Carried by Microparticles Corrects Angiotensin II-Induced Hypertension and Endothelial Dysfunction in Mice. PLoS ONE, 2013, 8, e72861.	2.5	27
98	Circulating microparticles from obstructive sleep apnea syndrome patients induce endothelin-mediated angiogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 202-207.	3.8	27
99	Hedgehog associated to microparticles inhibits adipocyte differentiation via a non-canonical pathway. Scientific Reports, 2016, 6, 23479.	3.3	27
100	Preservation of vascular contraction during ageing: dual effect on calcium handling and sensitization. British Journal of Pharmacology, 2003, 138, 745-750.	5.4	26
101	Delphinidin Inhibits Tumor Growth by Acting on VEGF Signalling in Endothelial Cells. PLoS ONE, 2015, 10, e0145291.	2.5	26
102	Impact of polyphenols on extracellular vesicle levels and effects and their properties as tools for drug delivery for nutrition and health. Archives of Biochemistry and Biophysics, 2018, 644, 57-63.	3.0	25
103	Cedrelopsis grevei induced hypotension and improved endothelial vasodilatation through an increase of Cu/Zn SOD protein expression. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H775-H781.	3.2	24
104	Fenofibrate improves age-related endothelial dysfunction in rat resistance arteries. Atherosclerosis, 2007, 193, 112-120.	0.8	24
105	Rosiglitazone, a Peroxisome Proliferator-Activated Receptor-Î ³ Agonist, Prevents Microparticle-Induced Vascular Hyporeactivity through the Regulation of Proinflammatory Proteins. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 539-547.	2.5	24
106	Extracellular vesicles: Pharmacological modulators of the peripheral and central signals governing obesity. , 2016, 157, 65-83.		24
107	Cyclooxygenase-2 Expression and Role of Vasoconstrictor Prostanoids in Small Mesenteric Arteries From Patients With Crohn's Disease. Circulation, 2003, 107, 1407-1410.	1.6	23
108	Deletion of MLCK210 induces subtle changes in vascular reactivity but does not affect cardiac function. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2342-H2349.	3.2	23

#	Article	IF	CITATIONS
109	Pleiotropic Beneficial Effects of Epigallocatechin Gallate, Quercetin and Delphinidin on Cardiovascular Diseases Associated with Endothelial Dysfunction. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2014, 11, 249-264.	1.0	23
110	Preserved insulin vasorelaxation and up-regulation of the Akt/eNOS pathway in coronary arteries from insulin resistant obese Zucker rats. Atherosclerosis, 2011, 217, 331-339.	0.8	22
111	Enhancement by neuropeptide Y (NPY) of the dihydropyridineâ€sensitive component of the response to α ₁ â€adrenoceptor stimulation in rat isolated mesenteric arterioles. British Journal of Pharmacology, 1990, 99, 389-395.	5.4	21
112	Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction. Biochemical Pharmacology, 2014, 92, 607-617.	4.4	21
113	Association between obstructive sleep apnea severity and endothelial dysfunction in patients with type 2 diabetes. Cardiovascular Diabetology, 2017, 16, 39.	6.8	21
114	Plasmatic concentration of organochlorine lindane acts as metabolic disruptors in HepG2 liver cell line by inducing mitochondrial disorder. Toxicology and Applied Pharmacology, 2013, 272, 325-334.	2.8	20
115	Simvastatin and Ca2+ Signaling in Endothelial Cells: Involvement of Rho Protein. Biochemical and Biophysical Research Communications, 2001, 280, 486-490.	2.1	19
116	Plasma cells release membrane microparticles in a mouse model of multiple myeloma. Micron, 2013, 54-55, 75-81.	2.2	19
117	Antiangiogenic Tocotrienol Derivatives from <i>Garcinia amplexicaulis</i> . Journal of Natural Products, 2013, 76, 2246-2252.	3.0	19
118	Alterations of cycloâ€oxygenase products and NO in responses to angiotensin II of resistance arteries from the spontaneously hypertensive rat. British Journal of Pharmacology, 1996, 119, 1635-1641.	5.4	18
119	Circulating Microparticles from Patients with Obstructive Sleep Apnea Enhance Vascular Contraction. American Journal of Pathology, 2012, 181, 1473-1482.	3.8	18
120	Estrogen receptor alpha as a key target of organochlorines to promote angiogenesis. Angiogenesis, 2012, 15, 745-760.	7.2	18
121	Applications of Human Tissue-Engineered Blood Vessel Models to Study the Effects of Shed Membrane Microparticles from T-Lymphocytes on Vascular Function. Tissue Engineering - Part A, 2009, 15, 137-145.	3.1	17
122	Microparticles from apoptotic RAW 264.7Âmacrophage cells carry tumour necrosis factorâ€Î± functionally active on cardiomyocytes from adult mice. Journal of Extracellular Vesicles, 2015, 4, 28621.	12.2	17
123	Contribution of serotonin to cardiac remodeling associated with hypertensive diastolic ventricular dysfunction in rats. Journal of Hypertension, 2015, 33, 2310-2321.	0.5	17
124	Microparticles harbouring Sonic hedgehog morphogen improve the vasculogenesis capacity of endothelial progenitor cells derived from myocardial infarction patients. Cardiovascular Research, 2019, 115, 409-418.	3.8	17
125	Effect of mandibular advancement therapy on inflammatory and metabolic biomarkers in patients with severe obstructive sleep apnoea: a randomised controlled trial. Thorax, 2019, 74, 496-499.	5.6	17
126	Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis?. American Journal of Physiology - Renal Physiology, 2021, 320, G485-G495.	3.4	17

#	Article	IF	CITATIONS
127	[53] Pharmacological approaches of endothelial nitric oxide-dependent vasorelaxation induced by polyphenols from plant extracts. Methods in Enzymology, 1999, 301, 522-532.	1.0	16
128	Nonmuscle Myosin Light Chain Kinase: A Key Player in Intermittent Hypoxiaâ€Induced Vascular Alterations. Journal of the American Heart Association, 2018, 7, .	3.7	16
129	Large Extracellular Vesicle-Associated Rap1 Accumulates in Atherosclerotic Plaques, Correlates With Vascular Risks and Is Involved in Atherosclerosis. Circulation Research, 2020, 127, 747-760.	4.5	16
130	Microbiotaâ€derived extracellular vesicles and metabolic syndrome. Acta Physiologica, 2021, 231, e13600.	3.8	16
131	Neuropeptide Y Increases Force Development through a Mechanism That Involves Calcium Entry in Resistance Arteries. Journal of Vascular Research, 1993, 30, 309-314.	1.4	15
132	Recombinant human activated protein C improves endotoxemia-induced endothelial dysfunction: a blood-free model in isolated mouse arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H277-H282.	3.2	15
133	Estrogen receptor α/HDAC/NFAT axis for delphinidin effects on proliferation and differentiation of T lymphocytes from patients with cardiovascular risks. Scientific Reports, 2017, 7, 9378.	3.3	15
134	Extract Enriched in Flavan-3-ols and Mainly Procyanidin Dimers Improves Metabolic Alterations in a Mouse Model of Obesity-Related Disorders Partially via Estrogen Receptor Alpha. Frontiers in Pharmacology, 2018, 9, 406.	3.5	15
135	Cardiovascular properties of aqueous extract from Mitragyna inermis (wild). Journal of Ethnopharmacology, 2004, 93, 345-350.	4.1	14
136	Polyphenols modulate calcium-independent mechanisms in human arterial tissue-engineered vascular media. Journal of Vascular Surgery, 2007, 46, 764-772.	1.1	14
137	A tocotrienol series with an oxidative terminal prenyl unit from Garcinia amplexicaulis. Phytochemistry, 2015, 109, 103-110.	2.9	14
138	Dialogue between endoplasmic reticulum and mitochondria as a key actor of vascular dysfunction associated to metabolic disorders. International Journal of Biochemistry and Cell Biology, 2016, 77, 10-14.	2.8	14
139	Cyclooxygenase-2 and inducible nitric oxide synthase in omental arteries harvested from patients with severe liver diseases: immuno-localization and influence on vascular tone. Intensive Care Medicine, 2003, 29, 262-270.	8.2	13
140	Protective Role of Polyphenols in Cyclosporine A-induced Nephrotoxicity During Rat Pregnancy. Journal of Histochemistry and Cytochemistry, 2006, 54, 923-932.	2.5	13
141	Interleukin-10 controls the protective effects of circulating microparticles from patients with septic shock on tissue-engineered vascular media. Clinical Science, 2013, 125, 77-85.	4.3	13
142	Wine polyphenols modulate calcium handling in rat aorta: involvement of nitric oxide pathway. Fundamental and Clinical Pharmacology, 2002, 16, 289-296.	1.9	12
143	Cedrelopsis grevei improves endothelial vasodilatation in aged rats through an increase of NO participation. Journal of Ethnopharmacology, 2008, 117, 76-83.	4.1	12
144	Vascular and Hepatic Impact of Short-Term Intermittent Hypoxia in a Mouse Model of Metabolic Syndrome. PLoS ONE, 2015, 10, e0124637.	2.5	12

#	Article	IF	CITATIONS
145	PPARα Regulates Endothelial Progenitor Cell Maturation and Myeloid Lineage Differentiation Through a NADPH Oxidase-Dependent Mechanism in Mice. Stem Cells, 2015, 33, 1292-1303.	3.2	12
146	Estrogen Receptor α Participates to the Beneficial Effect of Red Wine Polyphenols in a Mouse Model of Obesity-Related Disorders. Frontiers in Pharmacology, 2016, 7, 529.	3.5	12
147	Cardioprotective effect of sonic hedgehog ligand in pig models of ischemia reperfusion. Theranostics, 2020, 10, 4006-4016.	10.0	12
148	LPS-enriched small extracellular vesicles from metabolic syndrome patients trigger endothelial dysfunction by activation of TLR4. Metabolism: Clinical and Experimental, 2021, 118, 154727.	3.4	12
149	Paradoxical effects of polyphenolic compounds from Clusiaceae on angiogenesis. Biochemical Pharmacology, 2012, 83, 514-523.	4.4	11
150	Interaction in endothelium of non-muscular myosin light-chain kinase and the NF-κB pathway is critical to lipopolysaccharide-induced vascular hyporeactivity. Clinical Science, 2015, 129, 687-698.	4.3	11
151	Nitric Oxide and cGMP in Regulation of Arterial Tone. Trends in Cardiovascular Medicine, 1998, 8, 14-19.	4.9	10
152	Non-muscular myosin light chain kinase triggers intermittent hypoxia-induced interleukin-6 release, endothelial dysfunction and permeability. Scientific Reports, 2017, 7, 13664.	3.3	10
153	Effect of Polyphenolic Compounds on the Renal Na+ ,K+ -ATPase during the Restoration of Normotension after Experimentally Induced Hypertension in Rats. Experimental Physiology, 2003, 88, 475-482.	2.0	9
154	Effect of polyphenolic compounds on the renal Na+,K+-ATPase during development and persistence of hypertension in rats. Experimental Physiology, 2004, 89, 73-81.	2.0	9
155	Paradoxical effects of ethoxidine, a topoisomerase I inhibitor, in the cellular processes leading to angiogenesis on endothelial cells. Carcinogenesis, 2011, 32, 286-295.	2.8	9
156	Detrimental arterial inflammatory effect of microparticles circulating in preeclamptic women: exÂvivo evaluation in human arteries. Fundamental and Clinical Pharmacology, 2015, 29, 450-461.	1.9	9
157	Red Wine Polyphenol Compounds Favor Neovascularisation through Estrogen Receptor α-Independent Mechanism in Mice. PLoS ONE, 2014, 9, e110080.	2.5	9
158	Role of Endothelial Nitric Oxide in the Response to Angiotensin II of Small Mesenteric Arteries of the Rat. Journal of Vascular Research, 1996, 33, 386-394.	1.4	8
159	Sonic Hedgehog Pathway as a Target for Therapy in Angiogenesis-Related Diseases. Current Signal Transduction Therapy, 2009, 4, 31-45.	0.5	8
160	Cyclooxygenase-2-Derived Prostacyclin Protective Role on Endotoxin-Induced Mouse Cardiomyocyte Mortality. Cardiovascular Toxicology, 2011, 11, 347-356.	2.7	8
161	Increased monocyte/neutrophil and pro-coagulant microparticle levels and overexpression of aortic endothelial caveolin-1β in dyslipidemic sand rat, Psammomys obesus. Journal of Diabetes and Its Complications, 2016, 30, 21-29.	2.3	8
162	Extracellular Vesicles: New Bullets to Fight Fungal Infections. Trends in Cell Biology, 2020, 30, 589-590.	7.9	8

#	Article	IF	CITATIONS
163	Microparticles as biological vectors of activated protein C treatment in sepsis. Critical Care, 2011, 15, 197.	5.8	7
164	Enhancement of the Anti-Angiogenic Effects of Delphinidin When Encapsulated within Small Extracellular Vesicles. Nutrients, 2021, 13, 4378.	4.1	7
165	Circulating Microparticles in Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 100-101.	5.6	6
166	Ethyl Acetate Fraction of <i>Lannea microcarpa</i> Engl. and K. Krause (Anacardiaceae) Trunk Barks Corrects Angiotensin II-Induced Hypertension and Endothelial Dysfunction in Mice. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	6
167	Expression and Biological Activity of Parathyroid Hormone-Related Peptide in Pregnant Rat Uterine Artery: Any Role for 8-Iso-Prostaglandin F2α?. Endocrinology, 2008, 149, 626-633.	2.8	5
168	PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>δ</mml:mi>Activity in Cardiovascular Diseases: A Potential Pharmacological Target. PPAR Research, 2009, 2009, 1-9.</mml:math 	2.4	5
169	Ethanol Extract of Leaves of <i>Cassia siamea Lam</i> Protects against Diabetes-Induced Insulin Resistance, Hepatic, and Endothelial Dysfunctions in <i>ob/ob</i> Mice. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	4.0	5
170	Phostine 3.1a as a pharmacological compound with antiangiogenic properties against diseases with excess vascularization. FASEB Journal, 2019, 33, 5864-5875.	0.5	5
171	Intermittent Hypoxia Mediates Caveolae Disassembly That Parallels Insulin Resistance Development. Frontiers in Physiology, 2020, 11, 565486.	2.8	5
172	Effect of lipopolysaccharide treatment on neurogenic contraction and noradrenaline release in rat arteries. Fundamental and Clinical Pharmacology, 2000, 14, 593-600.	1.9	4
173	Activation of Endothelial Pro-resolving Anti-Inflammatory Pathways by Circulating Microvesicles from Non-muscular Myosin Light Chain Kinase-Deficient Mice. Frontiers in Pharmacology, 2016, 7, 322.	3.5	4
174	Low concentration of ethanol favors progenitor cell differentiation and neovascularization in high-fat diet-fed mice model. International Journal of Biochemistry and Cell Biology, 2016, 78, 43-51.	2.8	4
175	Microparticles Carrying Peroxisome Proliferator-Activated Receptor Alpha Restore the Reduced Differentiation and Functionality of Bone Marrow-Derived Cells Induced by High-Fat Diet. Stem Cells Translational Medicine, 2018, 7, 135-145.	3.3	4
176	Screening of ordinary commercial varieties of apple fruits under different storage conditions for their potential vascular and metabolic protective properties. Food and Function, 2018, 9, 5855-5867.	4.6	4
177	Carrot Supplementation Improves Blood Pressure and Reduces Aortic Root Lesions in an Atherosclerosis-Prone Genetic Mouse Model. Nutrients, 2021, 13, 1181.	4.1	4
178	Carrot Genotypes Contrasted by Root Color and Grown under Different Conditions Displayed Differential Pharmacological Profiles in Vascular and Metabolic Cells. Nutrients, 2020, 12, 337.	4.1	4
179	Potentiation by aminoethylisothiourea of the extra-cellular Ca2+ component of norepinephrine-induced contraction in rat femoral arteries. Biochemical Pharmacology, 2001, 61, 109-118.	4.4	3
180	Endothelium in Diseased States. BioMed Research International, 2014, 2014, 1-2.	1.9	3

#	Article	IF	CITATIONS
181	Polyphenols Have No Impact on Endothelial Function in Patients with Obstructive Sleep Apnea: A Randomized Controlled Trial. Journal of Nutrition, 2018, 148, 581-586.	2.9	3
182	A redox-sensitive signaling pathway mediates pro-angiogenic effect of chlordecone via estrogen receptor activation. International Journal of Biochemistry and Cell Biology, 2018, 97, 83-97.	2.8	3
183	Circulating microparticles released during dyslipidemia may exert deleterious effects on blood vessels and endothelial function. Journal of Diabetes and Its Complications, 2020, 34, 107683.	2.3	3
184	Microparticles as a means of cellâ€toâ€cell communication in endothelial dysfunction associated with type 1 diabetes. Acta Physiologica, 2016, 216, 156-158.	3.8	2
185	Paradoxical Effect of Nonalcoholic Red Wine Polyphenol Extract, Provinolsâ,,¢, in the Regulation of Cyclooxygenases in Vessels from Zucker Fatty Rats (fa/fa). Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	4.0	2
186	Obstructive sleep apnoea severity and liver steatosis measured by magnetic resonance imaging. European Respiratory Journal, 2020, 55, 1901514.	6.7	2
187	Apple Supplementation Improves Hemodynamic Parameter and Attenuates Atherosclerosis in High-Fat Diet-Fed Apolipoprotein E-Knockout Mice. Biomedicines, 2020, 8, 495.	3.2	2
188	Dual effect of polyphenolic compounds on cardiac Na ⁺ /K ⁺ -ATPase during development and persistence of hypertension in ratsThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research Canadian Journal of Physiology and Pharmacology, 2009, 87, 1046-1054.	1.4	1
189	Red wine polyphenols correct vascular function injured by chronic carbon tetrachloride intoxication. General Physiology and Biophysics, 2011, 30, 207-213.	0.9	1
190	The Role of Smoothened and Hh Signaling in Neovascularization. Topics in Medicinal Chemistry, 2014, , 173-205.	0.8	1
191	Exosomes in metabolic syndrome. , 2020, , 343-356.		1
192	Protection by Red Wine Polyphenols against Metabolic and Cardiovascular Alterations Associated with Obesity: A Possible Link with Estrogen Alpha Receptor. Journal of Wine Research, 2011, 22, 151-157.	1.5	0
193	Mitochondrial and Free Radical Metabolism – Biological and Pathological Implications. , 2014, , 279-293		0
194	Paradoxical Effects of Microvesicles on Free Radicals Generation – Pathological Implications. , 2014, , 877-888.		0