
R Matthew Asmussen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/467930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The behavior of iodine in stabilized granular activated carbon and silver mordenite in cementitious waste forms. Journal of Environmental Radioactivity, 2022, 244-245, 106824.	1.7	2
2	The evolution of hydrated lime-based cementitious waste forms during leach testing leading to enhanced technetium retention. Journal of Hazardous Materials, 2022, 430, 128507.	12.4	4
3	Review and experimental comparison of the durability of iodine waste forms in semi-dynamic leach testing. Chemical Engineering Journal Advances, 2022, 11, 100300.	5.2	7
4	A Lithium Feedstock Pathway: Coupled Electrochemical Extraction and Direct Battery Materials Manufacturing. ACS Energy Letters, 2022, 7, 2420-2427.	17.4	9
5	Seeded Stage III glass dissolution behavior of a statistically designed glass matrix. Journal of the American Ceramic Society, 2021, 104, 4145-4162.	3.8	9
6	Polyacrylonitrile Composites of Ag–Al–Si–O Aerogels and Xerogels as Iodine and Iodide Sorbents. ACS Applied Polymer Materials, 2021, 3, 3344-3353.	4.4	11
7	Competitive TcO4–, IO3–, and CrO42– Incorporation into Ettringite. Environmental Science & Technology, 2021, 55, 1057-1066.	10.0	11
8	The Influence of Transitional Metal Dopants on Reducing Chlorine Evolution during the Electrolysis of Raw Seawater. Applied Sciences (Switzerland), 2021, 11, 11911.	2.5	3
9	lodine immobilization by materials through sorption and redox-driven processes: A literature review. Science of the Total Environment, 2020, 716, 132820.	8.0	59
10	Technetium immobilization by materials through sorption and redox-driven processes: A literature review. Science of the Total Environment, 2020, 716, 132849.	8.0	19
11	The sporadic history of rubidium and its role in corrosion of steel related to nuclear material storage. Journal of Nuclear Materials, 2020, 530, 151914.	2.7	3
12	Immobilizing Pertechnetate in Ettringite via Sulfate Substitution. Environmental Science & Technology, 2020, 54, 13610-13618.	10.0	20
13	Investigating the Durability of Iodine Waste Forms in Dilute Conditions. Materials, 2019, 12, 686.	2.9	21
14	Synthesis of Nd3BSi2O10 using a LiCl-flux method. Journal of Nuclear Materials, 2019, 515, 370-381.	2.7	4
15	Kinetics of oxyapatite [Ca2Nd8(SiO4)6O2] and powellite [(Ca,Sr,Ba)MoO4] dissolution in glass-ceramic nuclear waste forms in acidic, neutral, and alkaline conditions. Journal of Nuclear Materials, 2019, 515, 227-237.	2.7	17
16	Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments. Journal of Hazardous Materials, 2019, 379, 119364.	12.4	64
17	The dissolution behavior of borosilicate glasses in far-from equilibrium conditions. Geochimica Et Cosmochimica Acta, 2018, 226, 132-148.	3.9	47
18	Getters for improved technetium containment in cementitious waste forms. Journal of Hazardous Materials, 2018, 341, 238-247.	12.4	25

#	Article	IF	CITATIONS
19	Synthesis and characterization of oxyapatite [Ca2Nd8(SiO4)6O2] and mixed-alkaline-earth powellite [(Ca,Sr,Ba)MoO4] for a glass-ceramic waste form. Journal of Nuclear Materials, 2018, 510, 623-634.	2.7	21
20	Characterizing Technetium in Subsurface Sediments for Contaminant Remediation. ACS Earth and Space Chemistry, 2018, 2, 1145-1160.	2.7	8
21	Technetium Stabilization in Low-Solubility Sulfide Phases: A Review. ACS Earth and Space Chemistry, 2018, 2, 532-547.	2.7	36
22	Corrosion Behavior and Microstructure Influence of Glass-Ceramic Nuclear Waste Forms. Corrosion, 2017, 73, 1306-1319.	1.1	11
23	Silver-based getters for ¹²⁹ I removal from low-activity waste. Radiochimica Acta, 2016, 104, 905-913.	1.2	21
24	The function of Sn(II)-apatite as a Tc immobilizing agent. Journal of Nuclear Materials, 2016, 480, 393-402.	2.7	18
25	Removal of TcO ₄ [–] from Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials. Chemistry of Materials, 2016, 28, 3976-3983.	6.7	56
26	Technetium Getters to Improve Cast Stone Performance. Materials Research Society Symposia Proceedings, 2015, 1744, 43-52.	0.1	1