Arjen Y Hoekstra ## List of Publications by Year in Descending Order Source: https://exaly.com/author-pdf/4678930/arjen-y-hoekstra-publications-by-year.pdf Version: 2024-04-19 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. | 213 | 19,817 | 68 | 138 | |--------------------|-----------------------|-------------|----------------| | papers | citations | h-index | g-index | | 242
ext. papers | 23,216 ext. citations | 6.8 avg, IF | 7.9
L-index | | # | Paper | IF | Citations | |-----|--|---------------|-----------| | 213 | Livestock water and land productivity in Kenya and their implications for future resource use <i>Heliyon</i> , 2022 , 8, e09006 | 3.6 | O | | 212 | Volume versus value of crop-related water footprints and virtual water flows: A case study for the Yellow River Basin. <i>Journal of Hydrology</i> , 2022 , 608, 127674 | 6 | О | | 211 | EUB bioethanol potential from wheat straw and maize stover and the environmental footprint of residue-based bioethanol. <i>Mitigation and Adaptation Strategies for Global Change</i> , 2022 , 27, 1 | 3.9 | O | | 210 | Linking the Environmental Pressures of China's Capital Development to Global Final Consumption of the Past Decades and into the Future. <i>Environmental Science & Environmental Environmental</i> | 10.3 | 6 | | 209 | Water Footprint, Blue Water Scarcity, and Economic Water Productivity of Irrigated Crops in Peshawar Basin, Pakistan. <i>Water (Switzerland)</i> , 2021 , 13, 1249 | 3 | 3 | | 208 | Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership. <i>Ecological Indicators</i> , 2021 , 124, 10739 | 9 ≨ .8 | 6 | | 207 | Physical versus virtual water transfers to overcome local water shortages: A comparative analysis of impacts. <i>Advances in Water Resources</i> , 2021 , 147, 103811 | 4.7 | 7 | | 206 | Resilience Meets the WaterEnergyEood Nexus: Mapping the Research Landscape. <i>Frontiers in Environmental Science</i> , 2021 , 9, | 4.8 | 8 | | 205 | Local water management in a global context. <i>Advances in Water Resources</i> , 2021 , 155, 104022 | 4.7 | | | 204 | Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 149, 111417 | 16.2 | 7 | | 203 | An integrated modelling approach to derive the grey water footprint of veterinary antibiotics. <i>Environmental Pollution</i> , 2021 , 288, 117746 | 9.3 | О | | 202 | Blue water footprint linked to national consumption and international trade is unsustainable. <i>Nature Food</i> , 2020 , 1, 792-800 | 14.4 | 18 | | 201 | Global Phosphorus Losses from Croplands under Future Precipitation Scenarios. <i>Environmental Science & Environmental &</i> | 10.3 | 5 | | 200 | Reduce blue water scarcity and increase nutritional and economic water productivity through changing the cropping pattern in a catchment. <i>Journal of Hydrology</i> , 2020 , 588, 125086 | 6 | 14 | | 199 | Changing global cropping patterns to minimize national blue water scarcity. <i>Hydrology and Earth System Sciences</i> , 2020 , 24, 3015-3031 | 5.5 | 12 | | 198 | China's Food Supply Sources Under Trade Conflict With the United States and Limited Domestic Land and Water Resources. <i>Earthly Future</i> , 2020 , 8, e2020EF001482 | 7.9 | 6 | | 197 | Water productivity benchmarks: The case of maize and soybean in Nebraska. <i>Agricultural Water Management</i> , 2020 , 234, 106122 | 5.9 | 17 | | 196 | Sustainability of the blue water footprint of crops. Advances in Water Resources, 2020, 143, 103679 | 4.7 | 29 | |-----|---|-----------------------|----------------| | 195 | The grey water footprint of human and veterinary pharmaceuticals. <i>Water Research X</i> , 2020 , 7, 100044 | 8.1 | 24 | | 194 | Water scarcity and fish imperilment driven by beef production. <i>Nature Sustainability</i> , 2020 , 3, 319-328 | 22.1 | 29 | | 193 | Treenuts and groundnuts in the EAT-Lancet reference diet: Concerns regarding sustainable water use. <i>Global Food Security</i> , 2020 , 24, 100357 | 8.3 | 26 | | 192 | Capping Human Water Footprints in the World's River Basins. <i>Earthl</i> s <i>Future</i> , 2020 , 8, e2019EF001363 | 7.9 | 24 | | 191 | Anthropogenic Nitrogen Loads to Freshwater: A High-Resolution Global Study 2020 , 303-317 | | 2 | | 190 | The Environmental Footprint of Transport by Car Using Renewable Energy. <i>Earthl</i> s Future, 2020 , 8, e20 | 1 9/EJ F00 |)1 <u>42</u> 8 | | 189 | Water-saving agriculture can deliver deep water cuts for China. <i>Resources, Conservation and Recycling</i> , 2020 , 154, 104578 | 11.9 | 17 | | 188 | Strategic design and finance of rainwater harvesting to cost-effectively meet large-scale urban water infrastructure needs. <i>Water Research</i> , 2020 , 184, 116063 | 12.5 | 12 | | 187 | Country-specific dietary shifts to mitigate climate and water crises. <i>Global Environmental Change</i> , 2020 , 62, 101926 | 10.1 | 75 | | 186 | Reducing food waste and changing cropping patterns to reduce water consumption and pollution in cereal production in Iran. <i>Journal of Hydrology</i> , 2020 , 586, 124881 | 6 | 22 | | 185 | Water for maize for pigs for pork: An analysis of inter-provincial trade in China. <i>Water Research</i> , 2019 , 166, 115074 | 12.5 | 23 | | 184 | Sensitivity of Streamflow Characteristics to Different Spatial Land-Use Configurations in Tropical Catchment. <i>Journal of Water Resources Planning and Management - ASCE</i> , 2019 , 145, 04019054 | 2.8 | 6 | | 183 | Land, water and carbon footprints of circular bioenergy production systems. <i>Renewable and Sustainable Energy Reviews</i> , 2019 , 111, 224-235 | 16.2 | 45 | | 182 | Green-blue water accounting in a soil water balance. Advances in Water Resources, 2019, 129, 112-117 | 4.7 | 39 | | 181 | Reply to van Noordwijk and Ellison: Moisture recycling: Key to assess hydrological impacts of land cover changes, but not to quantify water allocation to competing demands. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 8104 | 11.5 | 2 | | 180 | Limits to the world's green water resources for food, feed, fiber, timber, and bioenergy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4893-4898 | 11.5 | 109 | | 179 | Water productivity in meat and milk production in the US from 1960 to 2016. <i>Environment International</i> , 2019 , 132, 105084 | 12.9 | 14 | | 178 | Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. <i>Science of the Total Environment</i> , 2019 , 693, 133642 | 10.2 | 144 | |-----
--|------|-----| | 177 | The blue water footprint of urban green spaces: An example for Adelaide, Australia. <i>Landscape and Urban Planning</i> , 2019 , 190, 103613 | 7.7 | 32 | | 176 | How do Interactive Flood Simulation Models Influence Decision-Making? An Observations-Based Evaluation Method. <i>Water (Switzerland)</i> , 2019 , 11, 2427 | 3 | | | 175 | Monthly blue water footprint caps in a river basin to achieve sustainable water consumption: The role of reservoirs. <i>Science of the Total Environment</i> , 2019 , 650, 891-899 | 10.2 | 17 | | 174 | Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation. <i>Science of the Total Environment</i> , 2019 , 653, 241-252 | 10.2 | 83 | | 173 | Global Food Trade and Local Water Resources 2019 , 96-116 | | | | 172 | Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification. <i>Science of the Total Environment</i> , 2018 , 633, 1591-1601 | 10.2 | 24 | | 171 | Trade-off between blue and grey water footprint of crop production at different nitrogen application rates under various field management practices. <i>Science of the Total Environment</i> , 2018 , 626, 962-970 | 10.2 | 23 | | 170 | The blue water footprint of the world's artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation. <i>Advances in Water Resources</i> , 2018 , 113, 285-294 | 4.7 | 62 | | 169 | High-Resolution Water Footprints of Production of the United States. <i>Water Resources Research</i> , 2018 , 54, 2288-2316 | 5.4 | 55 | | 168 | Virtual water trade patterns in relation to environmental and socioeconomic factors: A case study for Tunisia. <i>Science of the Total Environment</i> , 2018 , 613-614, 287-297 | 10.2 | 37 | | 167 | Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 "Level of water stress". <i>Science of the Total Environment</i> , 2018 , 613-614, 218-232 | 10.2 | 146 | | 166 | The water footprint of water conservation using shade balls in California. <i>Nature Sustainability</i> , 2018 , 1, 358-360 | 22.1 | 22 | | 165 | Hydrological response to future land-use change and climate change in a tropical catchment. <i>Hydrological Sciences Journal</i> , 2018 , 63, 1368-1385 | 3.5 | 53 | | 164 | Water sustainability of investors: Development and application of an assessment framework.
Journal of Cleaner Production, 2018 , 202, 642-648 | 10.3 | 13 | | 163 | Grey water footprint reduction in irrigated crop production: effect of nitrogen application rate, nitrogen form, tillage practice and irrigation strategy. <i>Hydrology and Earth System Sciences</i> , 2018 , 22, 3245-3259 | 5.5 | 34 | | 162 | National water, food, and trade modeling framework: The case of Egypt. <i>Science of the Total Environment</i> , 2018 , 639, 485-496 | 10.2 | 35 | | 161 | Urban water security: A review. <i>Environmental Research Letters</i> , 2018 , 13, 053002 | 6.2 | 136 | | 160 | The blue and grey water footprint of construction materials: Steel, cement and glass. <i>Water Resources and Industry</i> , 2018 , 19, 1-12 | 4.5 | 52 | |-----|---|------|-----| | 159 | Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study. <i>Water Resources Research</i> , 2018 , 54, 345-358 | 5.4 | 145 | | 158 | Water, Energy, and Carbon Footprints of Bioethanol from the U.S. and Brazil. <i>Environmental Science & Environmental Science</i> | 10.3 | 43 | | 157 | The control versus resilience rationale for managing systems under uncertainty. <i>Environmental Research Letters</i> , 2018 , 13, 103002 | 6.2 | 9 | | 156 | Urban Water Security Dashboard: Systems Approach to Characterizing the Water Security of Cities.
Journal of Water Resources Planning and Management - ASCE, 2018, 144, 04018075 | 2.8 | 28 | | 155 | Expected increase in staple crop imports in water-scarce countries in 2050. <i>Water Research X</i> , 2018 , 1, 100001 | 8.1 | 11 | | 154 | Groundwater saving and quality improvement by reducing water footprints of crops to benchmarks levels. <i>Advances in Water Resources</i> , 2018 , 121, 480-491 | 4.7 | 9 | | 153 | Water, land and carbon footprints of sheep and chicken meat produced in Tunisia under different farming systems. <i>Ecological Indicators</i> , 2017 , 77, 304-313 | 5.8 | 35 | | 152 | The water footprint of second-generation bioenergy: A comparison of biomass feedstocks and conversion techniques. <i>Journal of Cleaner Production</i> , 2017 , 148, 571-582 | 10.3 | 75 | | 151 | Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. <i>Hydrological Processes</i> , 2017 , 31, 2029-2040 | 3.3 | 60 | | 150 | Water Footprint Assessment: Evolvement of a New Research Field. <i>Water Resources Management</i> , 2017 , 31, 3061-3081 | 3.7 | 141 | | 149 | Influence of internal variability on population exposure to hydroclimatic changes. <i>Environmental Research Letters</i> , 2017 , 12, 044007 | 6.2 | 18 | | 148 | The water footprint of wood for lumber, pulp, paper, fuel and firewood. <i>Advances in Water Resources</i> , 2017 , 107, 490-501 | 4.7 | 38 | | 147 | Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia 2017 , 48, 1143-1155 | | 20 | | 146 | Water Footprint Assessment in Supply Chains. Springer Series in Supply Chain Management, 2017, 65-85 | 0.9 | 5 | | 145 | Urban consumption of meat and milk and its green and blue water footprints-Patterns in the 1980s and 2000s for Nairobi, Kenya. <i>Science of the Total Environment</i> , 2017 , 579, 786-796 | 10.2 | 25 | | 144 | Application and recalibration of soil water retention pedotransfer functions in a tropical upstream catchment: case study in Bengawan Solo, Indonesia. <i>Journal of Hydrology and Hydromechanics</i> , 2017 , 65, 307-320 | 2.1 | 14 | | 143 | Water and Land Footprints and Economic Productivity as Factors in Local Crop Choice: The Case of Silk in Malawi. <i>Water (Switzerland)</i> , 2017 , 9, 802 | 3 | 10 | | 142 | Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level. <i>Hydrology and Earth System Sciences</i> , 2017 , 21, 3507-3524 | 5.5 | 27 | |-----|---|--------------|------| | 141 | Informing National Food and Water Security Policy through Water Footprint Assessment: the Case of Iran. <i>Water (Switzerland)</i> , 2017 , 9, 831 | 3 | 40 | | 140 | Global food and trade dimensions of groundwater governance 2017 , 353-366 | | 3 | | 139 | The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. <i>Frontiers of Agricultural Science and Engineering</i> , 2017 , 4, 185 | 1.7 | 14 | | 138 | BOARD-INVITED REVIEW: Quantifying water use in ruminant production. <i>Journal of Animal Science</i> , 2017 , 95, 2001 | 0.7 | 11 | | 137 | The Water Footprint of Animal Products 2017 , 21-30 | | 1 | | 136 | Water, Scarcity of 2016 , 1-5 | | 1 | | 135 | Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade. <i>Environment International</i> , 2016 , 94, 211-223 | 12.9 | 66 | | 134 | Reductionist and integrative research approaches to complex water security policy challenges. <i>Global Environmental Change</i> , 2016 , 39, 143-154 | 10.1 | 102 | | 133 | Effects of Roughness Length Parameterizations on Regional-Scale Land Surface Modeling of Alpine Grasslands in the Yangtze River Basin. <i>Journal of Hydrometeorology</i> , 2016 , 17, 1069-1085 | 3.7 | 13 | | 132 | Meat and milk production scenarios and the associated land footprint in Kenya. <i>Agricultural Systems</i> , 2016 , 145, 64-75 | 6.1 | 16 | | 131 | Four billion people facing severe water scarcity. <i>Science Advances</i> , 2016 , 2, e1500323 | 14.3 | 1901 | | 130 | The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008). Water Research, 2016 , 94, 73-85 | 12.5 | 115 | | 129 | A critique on the water-scarcity weighted water footprint in LCA. <i>Ecological Indicators</i> , 2016 , 66, 564-57 | 3 5.8 | 155 | | 128 | Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961 2 009). <i>Advances in Water Resources</i> , 2016 , 87, 29-41 | 4.7 | 96 | | 127 | European Water Footprint Scenarios for 2050. Water (Switzerland), 2016, 8, 226 | 3 | 14 | | 126 | Benchmark levels for the consumptive water footprint of crop production for
different environmental conditions: a case study for winter wheat in China. <i>Hydrology and Earth System Sciences</i> , 2016 , 20, 4547-4559 | 5.5 | 33 | | 125 | Water Footprint and Virtual Water Trade of Brazil. Water (Switzerland), 2016, 8, 517 | 3 | 34 | ## (2015-2016) | Future electricity: The challenge of reducing both carbon and water footprint. <i>Science of the Total Environment</i> , 2016 , 569-570, 1282-1288 | 10.2 | 61 | |--|---|---| | Imported water risk: the case of the UK. Environmental Research Letters, 2016, 11, 055002 | 6.2 | 51 | | Impacts of Noah model physics on catchment-scale runoff simulations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 807-832 | 4.4 | 19 | | Panta Rhei 2013I/015: global perspectives on hydrology, society and change. <i>Hydrological Sciences Journal</i> , 2016 , 1-18 | 3.5 | 44 | | The water footprint of industry 2015 , 221-254 | | 19 | | WATER. Fresh water goes global. <i>Science</i> , 2015 , 349, 478-9 | 33.3 | 140 | | Sustainability of the water footprint of the Spanish pork industry. <i>Ecological Indicators</i> , 2015 , 57, 465-47 | 74 5.8 | 61 | | The Water Footprint: The Relation Between Human Consumption and Water Use 2015 , 35-48 | | 9 | | Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes and Soil Heat Transport. <i>Journal of Hydrometeorology</i> , 2015 , 16, 2677-2694 | 3.7 | 34 | | Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. <i>Environmental Science & Environmental </i> | 10.3 | 203 | | Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. <i>Science of the Total Environment</i> , 2015 , 536, 847-857 | 10.2 | 113 | | Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP. <i>Water Resources Research</i> , 2015 , 51, 5735-5755 | 5.4 | 20 | | Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow. <i>Journal of Hydrometeorology</i> , 2015 , 16, 2659-2676 | 3.7 | 41 | | Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: A case study of the Yangtze River basin. <i>Water Resources Research</i> , 2015 , 51, 8494-8516 | 5.4 | 41 | | The potential for snow to supply human water demand in the present and future. <i>Environmental Research Letters</i> , 2015 , 10, 114016 | 6.2 | 119 | | Review and classification of indicators of green water availability and scarcity. <i>Hydrology and Earth System Sciences</i> , 2015 , 19, 4581-4608 | 5.5 | 87 | | Mitigating the Risk of Extreme Water Scarcity and Dependency: The Case of Jordan. <i>Water</i> (Switzerland), 2015 , 7, 5705-5730 | 3 | 28 | | Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. <i>Hydrology and Earth System Sciences</i> , 2015 , 19, 4877-4891 | 5.5 | 130 | | | Imported water risk: the case of the UK. Environmental Research Letters, 2016, 11, 055002 Impacts of Noah model physics on catchment-scale runoff simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 807-832 Panta Rhei 20138015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 2016, 1-18 The water footprint of industry 2015, 221-254 WATER. Fresh water goes global. Science, 2015, 349, 478-9 Sustainability of the water footprint of the Spanish pork industry.
Ecological Indicators, 2015, 57, 465-47. The Water Footprint: The Relation Between Human Consumption and Water Use 2015, 35-48 Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes and Soil Heat Transport. Journal of Hydrometeorology, 2015, 16, 2677-2694 Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. Environmental Science & Barry, Technology, 2015, 49, 12860-8 Increasing pressure on Freshwater resources due to terrestrial Feed ingredients for aquaculture production. Science of the Total Environment, 2015, 536, 847-857 Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP. Water Resources Research, 2015, 51, 5735-5755 Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow. Journal of Hydrometeorology, 2015, 16, 2659-2676 Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: A case study of the Yangtze River basin. Water Resources Research, 2015, 51, 8494-8516 The potential for snow to supply human water demand in the present and future. Environmental Research Letters, 2015, 10, 114016 | Imported water risk: the case of the UK. Environmental Research Letters, 2016, 11, 055002 6.2 Impacts of Noah model physics on catchment-scale runoff simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 807-832 44 Panta Rhei 20138015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 2016, 1-18 3-5 The water footprint of industry 2015, 221-254 WATER. Fresh water goes global. Science, 2015, 349, 478-9 33-3 Sustainability of the water footprint of the Spanish pork industry. Ecological Indicators, 2015, 57, 465-474, 8 The Water Footprint: The Relation Between Human Consumption and Water Use 2015, 35-48 Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes and Soil Heat Transport. Journal of Hydrometeorology, 2015, 16, 2677-2694 3-7 Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. Environmental Science & Bamp, Technology, 2015, 49, 12860-8 10-3 Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Science of the Total Environment, 2015, 536, 847-857 Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP. Water Resources Research, 2015, 51, 5735-5755 Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow. Journal of Hydrometeorology, 2015, 16, 2659-2676 Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modelings A case study of the Yangtze River basin. Water Resources Research, 2015, 10, 114016 The potential for snow to supply human water demand in the present and future. Environmental Research Letters, 2015, 10, 114016 The potential for snow to supply human water demand in the present and future. Environmental Research Letters, 2015, 11, 4581-4608 Mitigating the Risk of Extreme Water Scarcity | | 106 | Sustainability, Efficiency and Equitability of Water Consumption and Pollution in Latin America and the Caribbean. <i>Sustainability</i> , 2015 , 7, 2086-2112 | 3.6 | 56 | |-----|--|-----------------|-----| | 105 | The Water Footprint of Food Aid. Sustainability, 2015 , 7, 6435-6456 | 3.6 | 14 | | 104 | The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models. <i>Hydrology and Earth System Sciences</i> , 2015 , 19, 275-291 | 5.5 | 45 | | 103 | Ranking Water Transparency of Dutch Stock-Listed Companies. <i>Sustainability</i> , 2015 , 7, 4341-4359 | 3.6 | 10 | | 102 | Trends and spatial variation in water and land footprints of meat and milk production systems in Kenya. <i>Agriculture, Ecosystems and Environment</i> , 2015 , 205, 36-47 | 5.7 | 39 | | 101 | The sustainability of a single activity, production process or product. <i>Ecological Indicators</i> , 2015 , 57, 82- | 84 .8 | 24 | | 100 | The consumptive water footprint of electricity and heat: a global assessment. <i>Environmental Science: Water Research and Technology</i> , 2015 , 1, 285-297 | 4.2 | 165 | | 99 | The water footprint of Tunisia from an economic perspective. <i>Ecological Indicators</i> , 2015 , 52, 311-319 | 5.8 | 74 | | 98 | Water footprint scenarios for 2050: a global analysis. <i>Environment International</i> , 2014 , 64, 71-82 | 12.9 | 239 | | 97 | Sustainable, efficient, and equitable water use: the three pillars under wise freshwater allocation. <i>Wiley Interdisciplinary Reviews: Water</i> , 2014 , 1, 31-40 | 5.7 | 91 | | 96 | Humanity's unsustainable environmental footprint. Science, 2014, 344, 1114-7 | 33.3 | 578 | | 95 | Analysing the cascades of uncertainty in flood defence projects: How Bot knowing enough Is related to anoming differently In Global Environmental Change, 2014, 24, 373-388 | 10.1 | 23 | | 94 | Application of a Remote Sensing Method for Estimating Monthly Blue Water Evapotranspiration in Irrigated Agriculture. <i>Remote Sensing</i> , 2014 , 6, 10033-10050 | 5 | 22 | | 93 | The blue water footprint and land use of biofuels from algae. Water Resources Research, 2014, 50, 8549 |)- <u>85</u> 63 | 42 | | 92 | The added value of water footprint assessment for national water policy: a case study for Morocco. <i>PLoS ONE</i> , 2014 , 9, e99705 | 3.7 | 100 | | 91 | Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin. <i>Hydrology and Earth System Sciences</i> , 2014 , 18, 2219-2234 | 5.5 | 94 | | 90 | Towards the Improvement of Blue Water Evapotranspiration Estimates by Combining Remote Sensing and Model Simulation. <i>Remote Sensing</i> , 2014 , 6, 7026-7049 | 5 | 7 | | 89 | Evolving water science in the Anthropocene. <i>Hydrology and Earth System Sciences</i> , 2014 , 18, 319-332 | 5.5 | 96 | | 88 | Water conservation through trade: the case of Kenya. Water International, 2014, 39, 451-468 | 2.4 | 29 | |----------------|--|-------|-----| | 87 | Water for animal products: a blind spot in water policy. <i>Environmental Research Letters</i> , 2014 , 9, 091003 | 3 6.2 | 23 | | 86 | Water footprint benchmarks for crop production: A first global assessment. <i>Ecological Indicators</i> , 2014 , 46, 214-223 | 5.8 | 213 | | 85 | Uncovering the origin of ambiguity in nature-inclusive flood infrastructure projects. <i>Ecology and Society</i> , 2014 , 19, | 4.1 | 3 | | 84 | Application of an interactive water simulation model in urban water management: a case study in Amsterdam. <i>Water Science and Technology</i> , 2014 , 70, 1729-39 | 2.2 | 9 | | 83 | Today virtual water consumption and trade under future water scarcity. <i>Environmental Research Letters</i> , 2014 , 9, 074007 | 6.2 | 46 | | 82 | Assessment of Roughness Length Schemes Implemented within the Noah Land Surface Model for High-Altitude Regions. <i>Journal of Hydrometeorology</i> , 2014 , 15, 921-937 | 3.7 |
44 | | 81 | Why are decisions in flood disaster management so poorly supported by information from flood models?. <i>Environmental Modelling and Software</i> , 2014 , 53, 53-61 | 5.2 | 67 | | 80 | The water footprint of tourism in Spain. <i>Tourism Management</i> , 2014 , 40, 90-101 | 10.8 | 62 | | 79 | Identification of appropriate lags and temporal resolutions for low flow indicators in the River Rhine to forecast low flows with different lead times. <i>Hydrological Processes</i> , 2013 , 27, 2742-2758 | 3.3 | 21 | | 7 ⁸ | Sustainability of national consumption from a water resources perspective: The case study for France. <i>Ecological Economics</i> , 2013 , 88, 133-147 | 5.6 | 58 | | 77 | Water Footprint Assessment (WFA) for better water governance and sustainable development. Water Resources and Industry, 2013 , 1-2, 1-6 | 4.5 | 35 | | 76 | Complementarities of water-focused life cycle assessment and water footprint assessment. <i>Environmental Science & Environmental Environmenta</i> | 10.3 | 132 | | 75 | Potential water saving through changes in European diets. <i>Environment International</i> , 2013 , 61, 45-56 | 12.9 | 96 | | 74 | The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. <i>Water Resources and Industry</i> , 2013 , 1-2, 25-36 | 4.5 | 167 | | 73 | The water footprint of the EU for different diets. <i>Ecological Indicators</i> , 2013 , 32, 1-8 | 5.8 | 153 | | 72 | Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models. <i>Water Resources Research</i> , 2013 , 49, 4035-4053 | 5.4 | 59 | | 71 | Analysis of long-term terrestrial water storage variations in the Yangtze River basin. <i>Hydrology and Earth System Sciences</i> , 2013 , 17, 1985-2000 | 5.5 | 29 | | 70 | Impacts of climate change on the seasonality of low flows in 134 catchments in the River Rhine basin using an ensemble of bias-corrected regional climate simulations. <i>Hydrology and Earth System Sciences</i> , 2013 , 17, 4241-4257 | 5.5 | 23 | |----|--|------|------| | 69 | Towards Quantification of the Water Footprint of Paper: A First Estimate of its Consumptive Component. <i>Water Resources Management</i> , 2012 , 26, 733-749 | 3.7 | 53 | | 68 | Mitigating the Water Footprint of Export Cut Flowers from the Lake Naivasha Basin, Kenya. <i>Water Resources Management</i> , 2012 , 26, 3725-3742 | 3.7 | 60 | | 67 | The water footprint of humanity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 3232-7 | 11.5 | 1223 | | 66 | A Global Assessment of the Water Footprint of Farm Animal Products. <i>Ecosystems</i> , 2012 , 15, 401-415 | 3.9 | 608 | | 65 | Water Footprint and Life Cycle Assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. <i>Journal of Cleaner Production</i> , 2012 , 33, 155-166 | 10.3 | 147 | | 64 | Shifting to ecological engineering in flood management: Introducing new uncertainties in the development of a Building with Nature pilot project. <i>Environmental Science and Policy</i> , 2012 , 22, 85-99 | 6.2 | 34 | | 63 | Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. <i>Ecological Indicators</i> , 2012 , 18, 42-49 | 5.8 | 178 | | 62 | The water footprint of soy milk and soy burger and equivalent animal products. <i>Ecological Indicators</i> , 2012 , 18, 392-402 | 5.8 | 72 | | 61 | The water footprint of sweeteners and bio-ethanol. <i>Environment International</i> , 2012 , 40, 202-211 | 12.9 | 109 | | 60 | Biofuel scenarios in a water perspective: The global blue and green water footprint of road transport in 2030. <i>Global Environmental Change</i> , 2012 , 22, 764-775 | 10.1 | 145 | | 59 | Application of multi-agent simulation to evaluate the influence of reservoir operation strategies on the distribution of water availability in the semi-arid Jaguaribe basin, Brazil. <i>Physics and Chemistry of the Earth</i> , 2012 , 47-48, 173-181 | 3 | 10 | | 58 | Computer-supported games and role plays in teaching water management. <i>Hydrology and Earth System Sciences</i> , 2012 , 16, 2985-2994 | 5.5 | 27 | | 57 | The blue water footprint of electricity from hydropower. <i>Hydrology and Earth System Sciences</i> , 2012 , 16, 179-187 | 5.5 | 152 | | 56 | Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China. <i>Hydrology and Earth System Sciences</i> , 2012 , 16, 2771-2781 | 5.5 | 150 | | 55 | Reply to Ridoutt and Huang: From water footprint assessment to policy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E1425-E1425 | 11.5 | 26 | | 54 | Determining Irrigated Areas and Quantifying Blue Water Use in Europe Using Remote Sensing Meteosat Second Generation (MSG) products and Global Land Data Assimilation System (GLDAS) Data. <i>Photogrammetric Engineering and Remote Sensing</i> , 2012 , 78, 861-873 | 1.6 | 27 | | 53 | The hidden water resource use behind meat and dairy. <i>Animal Frontiers</i> , 2012 , 2, 3-8 | 5.5 | 94 | | 52 | Global monthly water scarcity: blue water footprints versus blue water availability. <i>PLoS ONE</i> , 2012 , 7, e32688 | 3.7 | 559 | |----|--|------|------| | 51 | The Global Dimension of Water Governance: Why the River Basin Approach Is No Longer Sufficient and Why Cooperative Action at Global Level Is Needed. <i>Water (Switzerland)</i> , 2011 , 3, 21-46 | 3 | 83 | | 50 | The green, blue and grey water footprint of crops and derived crop products. <i>Hydrology and Earth System Sciences</i> , 2011 , 15, 1577-1600 | 5.5 | 1055 | | 49 | The blue, green and grey water footprint of rice from production and consumption perspectives. <i>Ecological Economics</i> , 2011 , 70, 749-758 | 5.6 | 284 | | 48 | Corporate Water Footprint Accounting and Impact Assessment: The Case of the Water Footprint of a Sugar-Containing Carbonated Beverage. <i>Water Resources Management</i> , 2011 , 25, 721-741 | 3.7 | 123 | | 47 | The water footprint of biofuel-based transport. <i>Energy and Environmental Science</i> , 2011 , 4, 2658 | 35.4 | 58 | | 46 | Downstreamness: A Concept to Analyze Basin Closure. <i>Journal of Water Resources Planning and Management - ASCE</i> , 2011 , 137, 404-411 | 2.8 | 12 | | 45 | Potential of Using Remote Sensing Techniques for Global Assessment of Water Footprint of Crops. <i>Remote Sensing</i> , 2010 , 2, 1177-1196 | 5 | 46 | | 44 | A global and high-resolution assessment of the green, blue and grey water footprint of wheat. <i>Hydrology and Earth System Sciences</i> , 2010 , 14, 1259-1276 | 5.5 | 232 | | 43 | The water footprint of Indonesian provinces related to the consumption of crop products. <i>Hydrology and Earth System Sciences</i> , 2010 , 14, 119-128 | 5.5 | 104 | | 42 | The water needed for Italians to eat pasta and pizza. Agricultural Systems, 2010, 103, 351-360 | 6.1 | 98 | | 41 | Strategic importance of green water in international crop trade. <i>Ecological Economics</i> , 2010 , 69, 887-89- | 45.6 | 146 | | 40 | Assessment of uncertainties in expert knowledge, illustrated in fuzzy rule-based models. <i>Ecological Modelling</i> , 2010 , 221, 1245-1251 | 3 | 28 | | 39 | The effect of modelling expert knowledge and uncertainty on multicriteria decision making: a river management case study. <i>Environmental Science and Policy</i> , 2010 , 13, 229-238 | 6.2 | 32 | | 38 | Feedback mechanisms between water availability and water use in a semi-arid river basin: A spatially explicit multi-agent simulation approach. <i>Environmental Modelling and Software</i> , 2010 , 25, 433 | -443 | 48 | | 37 | The blue, green and grey water footprint of rice from both a production and consumption perspective 2010 , 219-250 | | 17 | | 36 | Reply to Pfister and Hellweg: Water footprint accounting, impact assessment, and life-cycle assessment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, E114 | 11.5 | 53 | | 35 | Reply to Jongschaap et al.: The water footprint of Jatropha curcas under poor growing conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, E119 | 11.5 | 8 | | 34 | Reply to Maes et al.: A global estimate of the water footprint of Jatropha curcas under limited data availability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, E113 | 11.5 | 5 | |----|---|------|-----| | 33 | Flood damage reduction by compartmentalization of a dike ring: comparing the effectiveness of three strategies. <i>Journal of Flood Risk Management</i> , 2009 , 2, 315-321 | 3.1 | 6 | | 32 | Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis.
<i>Ecological Economics</i> , 2009 , 68, 1963-1974 | 5.6 | 218 | | 31 | The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. <i>Ecological Economics</i> , 2009 , 68, 1052-1060 | 5.6 | 300 | | 30 | The external water footprint of the Netherlands: Geographically-explicit quantification and impact assessment. <i>Ecological Economics</i> , 2009 , 69, 82-92 | 5.6 | 106 | | 29 | Delineating the Model-Stakeholder Gap: Framing Perceptions to Analyse the Information Requirement in River Management. <i>Water Resources Management</i> , 2009 , 23, 1423-1445 | 3.7 | 14 | | 28 | A river basin as a common-pool resource: A case study for the Jaguaribe basin in the semi-arid Northeast of Brazil. <i>International Journal of River Basin Management</i> , 2009 , 7, 345-353 | 1.7 | 12 | | 27 | Going against the flow: A critical analysis of inter-state virtual water trade in the context of India National River Linking Program. <i>Physics and Chemistry of the Earth</i> , 2009 , 34, 261-269 | 3 | 107 | | 26 | The water footprint of bioenergy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 10219-23 | 11.5 | 529 | | 25 | Water Security of Nations: How International Trade Affects National Water Scarcity and Dependency. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2009 , 27-36 | 0.3 | 5 | | 24 | The impact of upstream water abstractions on reservoir yield: the case of the Ord Reservoir in Brazil. <i>Hydrological Sciences Journal</i> , 2008 , 53, 857-867 | 3.5 | 10 | | 23 | Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe. <i>Physics and Chemistry of the Earth</i> , 2008 , 33, 633-639 | 3 | 16 | | 22 | The global component of freshwater demand and supply: an assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. <i>Water International</i> , 2008 , 33, 19-32 | 2.4 | 261 | | 21 | Adapting to climate change: a comparison of two strategies for dike heightening. <i>Natural Hazards</i> , 2008 , 47, 217-228 | 3 | 13 | | 20 | Uncertainty analysis at large scales: limitations and subjectivity of current practicesa water quality case study. <i>Water Science and Technology</i> , 2007 , 56, 1-9 | 2.2 | 2 | | 19 | The water footprint of coffee and tea consumption in the Netherlands. <i>Ecological Economics</i> , 2007 , 64, 109-118 | 5.6 | 194 | | 18 | The water footprints of Morocco and the Netherlands: Global water use as a result of domestic consumption of agricultural commodities. <i>Ecological Economics</i> , 2007 , 64, 143-151 | 5.6 | 109 | | 17 | The economic impact of restricted water supply: a computable general equilibrium analysis. <i>Water Research</i> , 2007 , 41, 1799-813 | 12.5 | 143 | ## LIST OF PUBLICATIONS | 16 | The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. <i>Ecological Economics</i> , 2006 , 60, 186-203 | 5.6 | 442 | |----|--|------|-----| | 15 | Virtual versus real water transfers within China. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2006 , 361, 835-42 | 5.8 | 159 | | 14 | Water saving through international trade of agricultural products. <i>Hydrology and Earth System Sciences</i> , 2006 , 10, 455-468 | 5.5 | 265 | | 13 | Water footprints of nations: Water use by people as a function of their consumption pattern. <i>Water Resources Management</i> , 2006 , 21, 35-48 | 3.7 | 766 | | 12 | Globalisation of water resources: international virtual water flows in relation to crop trade. <i>Global Environmental Change</i> , 2005 , 15, 45-56 | 10.1 | 432 | | 11 | FLOOD MANAGEMENT IN THE LOWER INCOMATI RIVER BASIN, MOZAMBIQUE: TWO ALTERNATIVES1. <i>Journal of the American Water Resources Association</i> , 2005 , 41, 607-619 | 2.1 | 13 | | 10 | Water Scarcity in the Zambezi Basin in the Long-Term Future: A Risk Assessment. <i>Integrated Assessment: an International Journal</i> , 2003 , 4, 185-204 | | 7 | | 9 | The water value-flow concept. <i>Physics and Chemistry of the Earth</i> , 2003 , 28, 175-182 | 3 | 9 | | 8 | Calculation methods to assess the value of upstream water flows and storage as a function of downstream benefits. <i>Physics and Chemistry of the Earth</i> , 2002 , 27, 977-982 | 3 | 16 | | 7 | An Integrated Approach Towards Assessing the Value of Water: A Case Study on the Zambezi Basin. <i>Integrated Assessment: an International Journal</i> , 2001 , 2, 199-208 | | 28 | | 6 | Modeling Water Availability: Scaling Issues 2001 , 245-253 | | | | 5 | Water supply in the long term: a risk assessment. <i>Physics and Chemistry of the Earth</i> , 2000 , 25, 221-226 | | 4 | | 4 | Appreciation of water: four perspectives. <i>Water Policy</i> , 2000 , 1, 605-622 | 1.6 | 27 | | 3 | Water for bioenergy: A Global Analysis69-89 | | 1 | | 2 | The Water Footprint of Modern Consumer Society | | 75 | | 1 | Grey water footprint reduction in irrigated crop production: effect of nitrogen application rate, nitrogen form, tillage practice and irrigation strategy | | 2 |