
Alexander Cholach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/467812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of CF4 from NF3 at the phase interface. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104178.	2.7	3
2	Re-Co alloys and single-atom Re catalysts in ammonia synthesis: A DFT study. Molecular Catalysis, 2021, 513, 111801.	1.0	0
3	Features of Extended XPS Spectra of C2FBr0.15 Intercalate and Silver Foil. Journal of Structural Chemistry, 2020, 61, 523-532.	0.3	1
4	Design of Active Centers in Ammonia Synthesis on Mo-Based Catalysts: A Theoretical Study. Topics in Catalysis, 2020, 63, 12-23.	1.3	1
5	Electronic and structural peculiarities of Br2-embedded C2F: XPS and DFT study. AIP Advances, 2018, 8, 085319.	0.6	5
6	Adjustment of active sites in catalytic ammonia synthesis over metal alloys and clusters: A theoretical study. Applied Catalysis A: General, 2018, 562, 223-233.	2.2	4
7	Extra electronic outer-shell peculiarities accessible under a joint XPS and DFT study. Physical Chemistry Chemical Physics, 2017, 19, 15842-15848.	1.3	5
8	Identification of conjugate electron transitions in X-ray photoelectron spectra. Journal of Structural Chemistry, 2017, 58, 1160-1165.	0.3	3
9	Resonant active sites in catalytic ammonia synthesis: A structural model. Surface Science, 2016, 645, 41-48.	0.8	5
10	The bulk of evidence for novel electron transitions above the core level threshold. Russian Journal of Physical Chemistry A, 2015, 89, 2402-2406.	0.1	1
11	Mechanism of conjugate electron transitions on the surface of a solid. Journal of Structural Chemistry, 2015, 56, 589-595.	0.3	2
12	The Double-Route Model of Oscillatory Phenomena in the NOÂ+ÂH2 Reaction on Noble Metal Surfaces. Catalysis Letters, 2013, 143, 817-828.	1.4	4
13	Specific channels for electron energy dissipation in the adsorbed system. Journal of Chemical Physics, 2013, 138, 104201.	1.2	7
14	Inelastic electron scattering in the adsorbed system. Journal of Structural Chemistry, 2011, 52, 13-20.	0.3	1
15	Electronic structures of mixed ionic–electronic conductors SrCoO. Journal of Physics and Chemistry of Solids, 2010, 71, 1581-1586.	1.9	6
16	Nature of the chemical bond of hydrogen and oxygen atoms with PT(100) surface: Quantum chemical calculation and disappearance potential spectra. Journal of Structural Chemistry, 2006, 47, 808-812.	0.3	0
17	Electronic structure of the Pt(100) single crystal surface affected by oxygen adsorption. Reaction Kinetics and Catalysis Letters, 2005, 86, 315-321.	0.6	7
18	The possible role of intermediate NH species in oscillations of the NO+H2 reaction on noble metal surfaces. Surface Science, 2004, 573, 264-271.	0.8	9

ALEXANDER CHOLACH

#	Article	IF	CITATIONS
19	Semi-Empirical Calculations on the Stability and Reactivity of NH x Species on Metal Surfaces. Catalysis Letters, 2003, 86, 9-16.	1.4	10
20	Adsorption of small molecules on the Pt(100) single crystal surface studied by Disappearance Potential Spectroscopy. Applied Surface Science, 2001, 180, 173-183.	3.1	9
21	Electronic properties of Pt(100) single crystal surface: experimental study and theoretical calculations. Journal of Molecular Catalysis A, 2000, 158, 181-187.	4.8	3
22	Erratum to "hydrogenation of isolated atoms and small clusters of carbon on Pt(111) surface: HREELS/TSD studies―[Surface Science 311 (1994) 308]. Surface Science, 1994, 315, 362.	0.8	0
23	Hydrogenation of isolated atoms and small clusters of carbon on Pt(111) surface: HREELS/TDS studies. Surface Science, 1994, 311, 308-321.	0.8	26
24	Hreels studies of Hads effect on NO adsorption on Pt(111). Reaction Kinetics and Catalysis Letters, 1991, 43, 507-514.	0.6	1
25	Hreels study and catalytic significance of low-temperature interaction of isolated carbon atoms with hydrogen on Pt(111). Catalysis Letters, 1991, 8, 101-106.	1.4	14
26	HREELS and TDS Studies of NO+H2 and NH3+O2 Reactions on Pt(111). NATO ASI Series Series B: Physics, 1991, , 249-253.	0.2	1
27	Low-temperature adsorption of oxygen over platinum monocrystals. Reaction Kinetics and Catalysis Letters, 1985, 27, 299-304.	0.6	5
28	Low-pressure decomposition of ammonia on rhodium. Reaction Kinetics and Catalysis Letters, 1984, 26, 381-386.	0.6	6
29	Decomposition of ammonia on rhenium I. Hydrogen adsorption on rhenium. Reaction Kinetics and Catalysis Letters, 1981, 18, 371-375.	0.6	1
30	Decomposition of ammonia on rhenium II. Nitrogen adsorption on rhenium. Reaction Kinetics and Catalysis Letters, 1981, 18, 381-385.	0.6	1
31	Decomposition of ammonia on rhenium III. Interaction of ammonia with rhenium. Reaction Kinetics and Catalysis Letters, 1981, 18, 391-396.	0.6	10
32	Hidden Resources of Coordinated XPS and DFT Studies. , 0, , .		0