
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4677965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 2017, 8, 2013.	12.8	1,398
2	Mapping the world's free-flowing rivers. Nature, 2019, 569, 215-221.	27.8	1,249
3	The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 2015, 54, 438-447.	4.9	825
4	Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21994-22001.	7.1	622
5	Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 2015, 48, 38-50.	5.6	516
6	Rainfall erosivity in Europe. Science of the Total Environment, 2015, 511, 801-814.	8.0	443
7	Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 2019, 7, 203-225.	6.5	389
8	Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 2020, 11, 4546.	12.8	365
9	Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total Environment, 2014, 479-480, 189-200.	8.0	354
10	Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 2017, 7, 4175.	3.3	348
11	Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 2021, 780, 146494.	8.0	261
12	A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences (Switzerland), 2015, 5, 117-126.	2.2	246
13	Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science and Policy, 2015, 51, 23-34.	4.9	240
14	Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Science of the Total Environment, 2018, 636, 282-298.	8.0	240
15	Countries and the global rate of soil erosion. Nature Sustainability, 2020, 3, 51-55.	23.7	226
16	Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation and Development, 2018, 29, 471-484.	3.9	214
17	Rainfall erosivity: An historical review. Catena, 2017, 157, 357-362.	5.0	175
18	Arable lands under the pressure of multiple land degradation processes. A global perspective. Environmental Research, 2021, 194, 110697.	7.5	165

#	Article	IF	CITATIONS
19	Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma, 2019, 355, 113912.	5.1	148
20	A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy, 2019, 86, 299-312.	5.6	143
21	Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 2017, 579, 1298-1315.	8.0	142
22	Mapping regional patterns of large forest fires in Wildland–Urban Interface areas in Europe. Journal of Environmental Management, 2016, 172, 112-126.	7.8	137
23	Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets. Journal of Hydrology, 2017, 548, 251-262.	5.4	132
24	Land susceptibility to water and wind erosion risks in the East Africa region. Science of the Total Environment, 2020, 703, 135016.	8.0	131
25	Soil Conservation in Europe: Wish or Reality?. Land Degradation and Development, 2016, 27, 1547-1551.	3.9	125
26	A New Assessment of Soil Loss Due to Wind Erosion in European Agricultural Soils Using a Quantitative Spatially Distributed Modelling Approach. Land Degradation and Development, 2017, 28, 335-344.	3.9	125
27	Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena, 2016, 137, 161-172.	5.0	121
28	Towards a Panâ€European Assessment of Land Susceptibility to Wind Erosion. Land Degradation and Development, 2016, 27, 1093-1105.	3.9	116
29	A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes. Environmental Research, 2018, 161, 291-298.	7.5	116
30	Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Science Reviews, 2021, 218, 103637.	9.1	111
31	Projections of soil loss by water erosion in Europe by 2050. Environmental Science and Policy, 2021, 124, 380-392.	4.9	111
32	Effect of Good Agricultural and Environmental Conditions on erosion and soil organic carbon balance: A national case study. Land Use Policy, 2016, 50, 408-421.	5.6	104
33	A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. Remote Sensing, 2020, 12, 1365.	4.0	97
34	Potential Sources of Anthropogenic Copper Inputs to European Agricultural Soils. Sustainability, 2018, 10, 2380.	3.2	95
35	Modelling Postâ€Treeâ€Harvesting Soil Erosion and Sediment Deposition Potential in the Turano River Basin (Italian Central Apennine). Land Degradation and Development, 2015, 26, 356-366.	3.9	92
36	Wind erosion susceptibility of European soils. Geoderma, 2014, 232-234, 471-478.	5.1	89

#	Article	IF	CITATIONS
37	Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. Catena, 2014, 114, 45-58.	5.0	80
38	Soil erosion modelling: A bibliometric analysis. Environmental Research, 2021, 197, 111087.	7.5	78
39	Soil natural capital in europe; a framework for state and change assessment. Scientific Reports, 2017, 7, 6706.	3.3	77
40	Soil erosion is unlikely to drive a future carbon sink in Europe. Science Advances, 2018, 4, eaau3523.	10.3	67
41	Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution. Global Change Biology, 2016, 22, 1976-1984.	9.5	65
42	Rainfall erosivity in Italy: a national scale spatio-temporal assessment. International Journal of Digital Earth, 2016, 9, 835-850.	3.9	65
43	Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments. Water (Switzerland), 2016, 8, 119.	2.7	60
44	Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modelling approach. Catena, 2017, 149, 770-781.	5.0	57
45	Rainfall Erosivity: An Overview of Methodologies and Applications. Vadose Zone Journal, 2017, 16, 1-16.	2.2	55
46	A spatial assessment of mercury content in the European Union topsoil. Science of the Total Environment, 2021, 769, 144755.	8.0	55
47	Global rainfall erosivity projections for 2050 and 2070. Journal of Hydrology, 2022, 610, 127865.	5.4	51
48	Assessment of the cover changes and the soil loss potential in European forestland: First approach to derive indicators to capture the ecological impacts on soil-related forest ecosystems. Ecological Indicators, 2016, 60, 1208-1220.	6.3	44
49	Objectâ€oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments. Land Degradation and Development, 2018, 29, 1270-1281.	3.9	44
50	Soil loss due to crop harvesting in the European Union: A first estimation of an underrated geomorphic process. Science of the Total Environment, 2019, 664, 487-498.	8.0	41
51	Tackling soil loss across Europe. Nature, 2015, 526, 195-195.	27.8	34
52	Copper Content and Export in European Vineyard Soils Influenced by Climate and Soil Properties. Environmental Science & Technology, 2021, 55, 7327-7334.	10.0	34
53	An indicator to reflect the mitigating effect of Common Agricultural Policy on soil erosion. Land Use Policy, 2020, 92, 104467.	5.6	33
54	Mercury in European topsoils: Anthropogenic sources, stocks and fluxes. Environmental Research, 2021, 201, 111556.	7.5	32

#	Article	IF	CITATIONS
55	Plutonium aided reconstruction of caesium atmospheric fallout in European topsoils. Scientific Reports, 2020, 10, 11858.	3.3	31
56	Discovering historical rainfall erosivity with a parsimonious approach: A case study in Western Germany. Journal of Hydrology, 2017, 544, 1-9.	5.4	30
57	Reconstruction of past rainfall erosivity and trend detection based on the REDES database and reanalysis rainfall. Journal of Hydrology, 2020, 590, 125372.	5.4	30
58	Global analysis of cover management and support practice factors that control soil erosion and conservation. International Soil and Water Conservation Research, 2022, 10, 161-176.	6.5	28
59	Detection of harvested forest areas in Italy using Landsat imagery. Applied Geography, 2014, 48, 102-111.	3.7	27
60	Assessment of soil erosion sensitivity and post-timber-harvesting erosion response in a mountain environment of Central Italy. Geomorphology, 2014, 204, 412-424.	2.6	25
61	The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing. Remote Sensing, 2015, 7, 11061-11082.	4.0	24
62	Reply to "The new assessment of soil loss by water erosion in Europe. Panagos P. et al., 2015 Environ. Sci. Policy 54, 438–447—A response―by Evans and Boardman [Environ. Sci. Policy 58, 11–15]. Environmental Science and Policy, 2016, 59, 53-57.	4.9	24
63	New Insights into the Geography and Modelling of Wind Erosion in the European Agricultural Land. Application of a Spatially Explicit Indicator of Land Susceptibility to Wind Erosion. Sustainability, 2015, 7, 8823-8836.	3.2	23
64	Monitoring gully erosion in the European Union: A novel approach based on the Land Use/Cover Area frame survey (LUCAS). International Soil and Water Conservation Research, 2022, 10, 17-28.	6.5	23
65	An in-depth statistical analysis of the rainstorms erosivity in Europe. Catena, 2021, 206, 105577.	5.0	23
66	GloSEM: High-resolution global estimates of present and future soil displacement in croplands by water erosion. Scientific Data, 2022, 9, .	5.3	23
67	Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity. Hydrology and Earth System Sciences, 2022, 26, 1907-1924.	4.9	21
68	FAO calls for actions to reduce global soil erosion. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 789-790.	2.1	20
69	Reply to the comment on "Rainfall erosivity in Europe―by Auerswald et al Science of the Total Environment, 2015, 532, 853-857.	8.0	19
70	A first assessment of rainfall erosivity synchrony scale at pan-European scale. Catena, 2021, 198, 105060.	5.0	19
71	Sustainable futures over the next decade are rooted in soil science. European Journal of Soil Science, 2022, 73, .	3.9	19
72	High-resolution soil erodibility map of Brazil. Science of the Total Environment, 2021, 781, 146673.	8.0	18

#	Article	IF	CITATIONS
73	Global forest restoration opportunities to foster coral reef conservation. Global Change Biology, 2021, 27, 5238-5252.	9.5	18
74	The use of Landsat imagery to assess large-scale forest cover changes in space and time, minimizing false-positive changes. Applied Geography, 2013, 41, 147-157.	3.7	17
75	Estimation of rainfall erosivity factor in Italy and Switzerland using Bayesian optimization based machine learning models. Catena, 2022, 211, 105957.	5.0	17
76	Reply to the comment on "The new assessment of soil loss by water erosion in Europe―by Fiener & Auerswald. Environmental Science and Policy, 2016, 57, 143-150.	4.9	16
77	RESUME: Turning an SWI acquisition into a fast qMRI protocol. PLoS ONE, 2017, 12, e0189933.	2.5	16
78	Lateral carbon transfer from erosion in noncroplands matters. Global Change Biology, 2018, 24, 3283-3284.	9.5	15
79	A â€~debt' based approach to land degradation as an indicator of global change. Global Change Biology, 2021, 27, 5407-5410.	9.5	15
80	Late Quaternary soil erosion and landscape development in the Apennine region (central Italy). Quaternary International, 2013, 312, 96-108.	1.5	13
81	Communicating Hydrological Hazard-Prone Areas in Italy With Geospatial Probability Maps. Frontiers in Environmental Science, 2019, 7, .	3.3	13
82	MAVEN: An Algorithm for Multi-Parametric Automated Segmentation of Brain Veins From Gradient Echo Acquisitions. IEEE Transactions on Medical Imaging, 2017, 36, 1054-1065.	8.9	12
83	Phosphorus plant removal from European agricultural land. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2022, 17, 5-20.	1.4	11
84	Longitudinal Assessment of Dentate Nuclei Relaxometry during Massive Gadobutrol Exposure. Magnetic Resonance in Medical Sciences, 2018, 17, 100-104.	2.0	10
85	Striatonigral involvement in Fabry Disease: A quantitative and volumetric Magnetic Resonance Imaging study. Parkinsonism and Related Disorders, 2018, 57, 27-32.	2.2	10
86	The Rise of Climate-Driven Sediment Discharge in the Amazonian River Basin. Atmosphere, 2020, 11, 208.	2.3	10
87	Positive cascading effect of restoring forests. International Soil and Water Conservation Research, 2020, 8, 102.	6.5	9
88	A new high resolution object-oriented approach to define the spatiotemporal dynamics of the cover-management factor in soil erosion modelling. Catena, 2022, 213, 106149.	5.0	9
89	Climate-scale modelling of suspended sediment load in an Alpine catchment debris flow (Rio) Tj ETQq1 1 0.7843	14 rgBT /(2.8	Dverlock 10 T
90	Geoarchaeological and historical implications of late Holocene landscape development in the	2.6	6

Carseolani Mountains, central Apennines, Italy. Geomorphology, 2014, 216, 26-39.

2.6 6

#	Article	IF	CITATIONS
91	Advances in soil erosion modelling through remote sensing data availability at European scale. Proceedings of SPIE, 2014, , .	0.8	5
92	Developing a high-resolution land use/land cover map by upgrading CORINE's agricultural components using detailed national and pan-European datasets. Geocarto International, 2022, 37, 10871-10906.	3.5	5
93	Quantifying the soil erosion legacy of the Soviet Union. Agricultural Systems, 2020, 185, 102940.	6.1	3
94	Outreach and Post-Publication Impact of Soil Erosion Modelling Literature. Sustainability, 2022, 14, 1342.	3.2	1
95	Occurrence and erosion susceptibility of German Pelosols and international equivalents [#] . Journal of Plant Nutrition and Soil Science, 0, , .	1.9	1