List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4677964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ORCA3, a Jasmonate-Responsive Transcriptional Regulator of Plant Primary and Secondary Metabolism. Science, 2000, 289, 295-297.	6.0	835
2	The AP2/ERF Domain Transcription Factor ORA59 Integrates Jasmonic Acid and Ethylene Signals in Plant Defense Â. Plant Physiology, 2008, 147, 1347-1357.	2.3	609
3	Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 2002, 1, 13-25.	3.1	475
4	Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59 Â Â. Plant Cell, 2013, 25, 744-761.	3.1	381
5	The seco-iridoid pathway from Catharanthus roseus. Nature Communications, 2014, 5, 3606.	5.8	355
6	Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnology Advances, 2016, 34, 441-449.	6.0	346
7	Transcription factors controlling plant secondary metabolism: what regulates the regulators?. Phytochemistry, 2002, 61, 107-114.	1.4	318
8	ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends in Plant Science, 2001, 6, 212-219.	4.3	316
9	The basic helixâ€loopâ€helix transcription factor CrMYC2 controls the jasmonateâ€responsive expression of the <i>ORCA</i> genes that regulate alkaloid biosynthesis in <i>Catharanthus roseus</i> . Plant Journal, 2011, 67, 61-71.	2.8	309
10	Engineering secondary metabolite production in plants. Current Opinion in Biotechnology, 2002, 13, 181-187.	3.3	306
11	Geraniol 10-hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Letters, 2001, 508, 215-220.	1.3	272
12	The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant Journal, 2001, 25, 43-53.	2.8	245
13	Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Molecular Biology, 2011, 75, 321-331.	2.0	233
14	Involvement of the Octadecanoid Pathway and Protein Phosphorylation in Fungal Elicitor-Induced Expression of Terpenoid Indole Alkaloid Biosynthetic Genes in Catharanthus roseus. Plant Physiology, 1999, 119, 1289-1296.	2.3	218
15	Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Molecular Biology, 1992, 18, 1121-1131.	2.0	208
16	The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in <i>Catharanthus roseus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8130-8135.	3.3	176
17	Auxinâ€induced, SCF ^{TIR1} â€mediated polyâ€ubiquitination marks AUX/IAA proteins for degradation. Plant Journal, 2009, 59, 100-109.	2.8	175
18	The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Molecular Biology, 2000, 43, 495-502.	2.0	174

#	Article	IF	CITATIONS
19	Ethylene Signaling Renders the Jasmonate Response of <i>Arabidopsis</i> Insensitive to Future Suppression by Salicylic Acid. Molecular Plant-Microbe Interactions, 2010, 23, 187-197.	1.4	169
20	Zinc Finger Proteins Act as Transcriptional Repressors of Alkaloid Biosynthesis Genes in Catharanthus roseus. Journal of Biological Chemistry, 2004, 279, 52940-52948.	1.6	167
21	Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins display different expression patterns. Plant Molecular Biology, 1990, 14, 119-126.	2.0	165
22	Molecular Cloning and Characterization of a Vacuolar Class III Peroxidase Involved in the Metabolism of Anticancer Alkaloids in <i>Catharanthus roseus</i> . Plant Physiology, 2008, 146, 403-417.	2.3	165
23	Regulation of gene expression by jasmonate hormones. Phytochemistry, 2009, 70, 1560-1570.	1.4	163
24	Molecular Cloning and Analysis of Strictosidine β-d-Glucosidase, an Enzyme in Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Journal of Biological Chemistry, 2000, 275, 3051-3056.	1.6	158
25	Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends in Pharmacological Sciences, 2002, 23, 563-569.	4.0	146
26	Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry, 2013, 85, 36-43.	1.4	123
27	Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Molecular Biology, 2001, 45, 477-488.	2.0	121
28	Identification of a Bipartite Jasmonate-Responsive Promoter Element in the Catharanthus roseus ORCA3 Transcription Factor Gene That Interacts Specifically with AT-Hook DNA-Binding Proteins. Plant Physiology, 2007, 144, 1680-1689.	2.3	117
29	CathaCyc, a Metabolic Pathway Database Built from Catharanthus roseus RNA-Seq Data. Plant and Cell Physiology, 2013, 54, 673-685.	1.5	116
30	A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Molecular Biology, 2000, 44, 675-685.	2.0	112
31	The basic helixâ€loopâ€helix transcription factor <scp>BIS</scp> 2 is essential for monoterpenoid indole alkaloid production in the medicinal plant <i>Catharanthus roseus</i> . Plant Journal, 2016, 88, 3-12.	2.8	98
32	CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. Journal of Experimental Botany, 2003, 54, 2587-2588.	2.4	97
33	Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Phytochemistry Reviews, 2007, 6, 353-362.	3.1	92
34	Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: Similar activity but difference in subcellular localization. Metabolic Engineering, 2013, 20, 198-211.	3.6	82
35	Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Applied Microbiology and Biotechnology, 2001, 56, 420-424.	1.7	81
36	Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. Metabolic Engineering, 2013, 20, 221-232.	3.6	80

#	Article	IF	CITATIONS
37	Comparison of the activities of CaMV 35S and FMV 34S promoter derivatives in Catharanthus roseus cells transiently and stably transformed by particle bombardment. , 1997, 33, 943-946.		67
38	Identification of UV-B light-responsive regions in the promoter of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Molecular Biology, 1999, 41, 491-503.	2.0	63
39	The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF. Plant Molecular Biology, 1999, 39, 1299-1310.	2.0	59
40	Iridoid Synthase Activity Is Common among the Plant Progesterone 5β-Reductase Family. Molecular Plant, 2015, 8, 136-152.	3.9	57
41	The Jasmonate-Responsive Element from the ORCA3 Promoter from Catharanthus roseus is Active in Arabidopsis and is Controlled by the Transcription Factor AtMYC2. Plant and Cell Physiology, 2011, 52, 578-587.	1.5	53
42	RAP-1 is an Arabidopsis MYC-like R protein homologue, that binds to G-box sequence motifs. Plant Molecular Biology, 1997, 34, 169-174.	2.0	51
43	Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding. Plant Cell Reports, 1997, 17, 50-54.	2.8	50
44	Versatile transformation vectors to assay the promoter activity of DNA elements in plants. Gene, 1994, 149, 373-374.	1.0	42
45	Elicitor-responsive promoter regions in the tryptophan decarboxylase gene from Catharanthus roseus. , 1999, 39, 129-136.		40
46	T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species. Transgenic Research, 2001, 10, 513-521.	1.3	40
47	Activation of the oxidative burst by yeast elicitor in Catharanthus roseus cells occurs independently of the activation of genes involved in alkaloid biosynthesis. Plant Molecular Biology, 2004, 55, 797-805.	2.0	39
48	The use of genetics to dissect plant secondary pathways. Current Opinion in Plant Biology, 2005, 8, 230-235.	3.5	38
49	Jasmonate-Responsive Gene Expression. Journal of Plant Growth Regulation, 2004, 23, 200-210.	2.8	36
50	Genetic Modification of Plant Secondary Metabolite Pathways Using Transcriptional Regulators. Advances in Biochemical Engineering/Biotechnology, 2001, 72, 103-125.	0.6	31
51	Nopaline T-DNA is maintained during regeneration and generative propagation of transformed tobacco plants. Molecular Genetics and Genomics, 1983, 190, 516-522.	2.4	29
52	Characterization of cDNA clones for a virus-inducible, glycine-rich protein from petunia. Plant Molecular Biology, 1990, 15, 521-523.	2.0	24
53	T-DNA hormone biosynthetic genes: Phytohormones and gene expression in plants. Genesis, 1987, 8, 321-337.	3.1	19

54 Southern, Northern and Western blot analysis. , 1994, , 273-295.

#	Article	IF	CITATIONS
55	Title is missing!. Biotechnology Letters, 1999, 21, 997-1002.	1.1	19
56	The jasmonateâ€inducible AP2/ERFâ€domain transcription factor ORCA3 activates gene expression via interaction with a jasmonateâ€responsive promoter element. Plant Journal, 2001, 25, 43-53.	2.8	18
57	Tailoring the plant metabolome without a loose stitch. Trends in Plant Science, 2005, 10, 305-307.	4.3	16
58	Putting the opium in poppy to sleep. Nature Biotechnology, 2004, 22, 1526-1527.	9.4	12
59	Changes in the tissue-specific prevalence of translatable mRNAs in transgenic tobacco shoots containing the T-DNA cytokinin gene. Plant Molecular Biology, 1988, 11, 625-631.	2.0	11
60	Interaction between the tobacco DNA-binding activity CBF and the cyt-1 promoter element of the Agrobacterium tumefaciens T-DNA gene T-CYT correlates with cyt-1 directed gene expression in multiple tobacco tissue types. Plant Journal, 1993, 4, 525-534.	2.8	11
61	An E. coli biosensor for screening of cDNA libraries for isochorismate pyruvate lyase-encoding cDNAs. Molecular Genetics and Genomics, 2018, 293, 1181-1190.	1.0	10
62	T-DNA Activation Tagging. , 2003, 236, 345-362.		8
63	Regulation of Secondary Metabolism by Jasmonate Hormones. , 2009, , 181-194.		8
64	Binding specificity and tissue-specific expression pattern of theArabidopsis bZIP transcription factor TGA2. Molecular Genetics and Genomics, 1996, 250, 237-239.	2.4	7
65	Chapter Thirteen Molecular regulation of monoterpenoid indole alkaloid biosynthesis. Recent Advances in Phytochemistry, 2001, , 275-295.	0.5	5
66	Electrophoretic Mobility Shift Assay for the Analysis of Interactions of Jasmonic Acid-Responsive Transcription Factors with DNA. Methods in Molecular Biology, 2013, 1011, 209-225.	0.4	5
67	Diversity and evolution of cytochrome P450s of Jacobaea vulgaris and Jacobaea aquatica. BMC Plant Biology, 2020, 20, 342.	1.6	5
68	Fusion with Fluorescent Proteins for Subcellular Localization of Enzymes Involved in Plant Alkaloid Biosynthesis. Methods in Molecular Biology, 2010, 643, 275-290.	0.4	5
69	The evolution of pyrrolizidine alkaloid diversity among and within <i>Jacobaea</i> species. Journal of Systematics and Evolution, 2022, 60, 361-376.	1.6	4
70	Title is missing!. Biotechnology Letters, 1999, 13, 605-608.	0.5	3
71	Jasmonate-responsive gene expression. , 2004, 23, 200.		3
72	Iridoid Synthase Activity Is Common among the Plant Progesterone 5Â-Reductase Family. Molecular Plant, 2014, , .	3.9	1

#	Article	IF	CITATIONS
73	Binding specificity and tissue-specific expression pattern of the. Molecular Genetics and Genomics, 1996, 250, 237.	2.4	1
74	Plant Response to Stress: Role of the Jasmonate Signal Transduction Pathway. , 2004, , 1006-1009.		0