Mustafa Alevli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4677325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of N2/H2 plasma on the growth of InN thin films on sapphire by hollow-cathode plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	6
2	Visible/infrared refractive index and phonon properties of GaN films grown on sapphire by hollow-cathode plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 050901.	2.1	5
3	Role of film thickness on the structural and optical properties of GaN on Si (100) grown by hollow-cathode plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	17
4	Influence of N2/H2 and N2 plasma on binary III-nitride films prepared by hollow-cathode plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	13
5	Enhancement in c-Si solar cells using 16 nm InN nanoparticles. Materials Research Express, 2016, 3, 056202.	1.6	6
6	Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	2.1	19
7	Comparison of trimethylgallium and triethylgallium as "Ga―source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, 01A137.	2.1	24
8	Effect of substrate temperature and Ga source precursor on growth and material properties of GaN grown by hollow cathode plasma assisted atomic layer deposition. , 2016, , .		1
9	Effect of reactor pressure on optical and electrical properties of InN films grown by high-pressure chemical vapor deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 423-429.	0.8	3
10	Enhancement of polycrystalline silicon solar cells efficiency using indium nitride particles. Journal of Optics (United Kingdom), 2015, 17, 105903.	2.2	7
11	Enhanced memory effect via quantum confinement in 16 nm InN nanoparticles embedded in ZnO charge trapping layer. Applied Physics Letters, 2014, 104, 253106.	3.3	27
12	A Near-Infrared Range Photodetector Based on Indium Nitride Nanocrystals Obtained Through Laser Ablation. IEEE Electron Device Letters, 2014, 35, 936-938.	3.9	33
13	Thermal stability of InN epilayers grown by high pressure chemical vapor deposition. Applied Surface Science, 2013, 268, 1-5.	6.1	11
14	Optical properties of AlN thin films grown by plasma enhanced atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	33
15	Atomic layer deposition of GaN at low temperatures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 01A124.	2.1	62
16	Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	13
17	Structural properties of AlN films deposited by plasmaâ€enhanced atomic layer deposition at different growth temperatures. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 266-271.	1.8	111
18	Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition. Thin Solid Films, 2012, 520, 2750-2755.	1.8	86

Mustafa Alevli

#	Article	IF	CITATIONS
19	The influence of N2/H2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition. Journal of Crystal Growth, 2011, 335, 51-57.	1.5	47
20	Optical properties of InN grown on templates with controlled surface polarities. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2351-2354.	1.8	7
21	Surface electron accumulation in indium nitride layers grown by high pressure chemical vapor deposition. Surface Science, 2007, 601, L120-L123.	1.9	18
22	Performance improvements of ultraviolet/infrared dual-band detectors. Infrared Physics and Technology, 2007, 50, 142-148.	2.9	12
23	The Fermi level dependence of the optical and magnetic properties of Ga1â^'xMnxN grown by metal–organic chemical vapour deposition. Journal of Physics Condensed Matter, 2006, 18, 2615-2622.	1.8	12
24	Surface structure, composition, and polarity of indium nitride grown by high-pressure chemical vapor deposition. Applied Physics Letters, 2006, 88, 122112.	3.3	11
25	Characterization of InN layers grown by high-pressure chemical vapor deposition. Applied Physics Letters, 2006, 89, 112119.	3.3	39
26	Properties of InN layers grown by High Pressure CVD. Materials Research Society Symposia Proceedings, 2006, 955, 1.	0.1	0
27	The characterization of InN growth under high-pressure CVD conditions. Physica Status Solidi (B): Basic Research, 2005, 242, 2985-2994.	1.5	23
28	The growth of InN and related alloys by high-pressure CVD. , 2005, , .		0
29	Properties of InN grown by High-Pressure CVD. Materials Research Society Symposia Proceedings, 2005, 892, 64.	0.1	1