
Svante Vikingsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/467717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conversion of 7-Carboxy-Cannabidiol (7-COOH-CBD) to 11-Nor-9-Carboxy-Tetrahydrocannabinol (THC-COOH) during Sample Preparation for GC–MS Analysis. Journal of Analytical Toxicology, 2022, 46, 573-576.	1.7	7
2	The metabolism of the synthetic cannabinoids ADBâ€BUTINACA and ADBâ€4enâ€PINACA and their detection in forensic toxicology casework and infused papers seized in prisons. Drug Testing and Analysis, 2022, 14, 634-652.	1.6	30
3	Characterization of recent non-fentanyl synthetic opioids via three different in vitro µ-opioid receptor activation assays. Archives of Toxicology, 2022, 96, 877-897.	1.9	10
4	Prevalence of Cannabidiol, â^†9- and â^†8-Tetrahydrocannabinol and Metabolites in Workplace Drug Testing Urine Specimens. Journal of Analytical Toxicology, 2022, 46, 866-874.	1.7	2
5	Update on Urine Adulterants and Synthetic Urine Samples to Subvert Urine Drug Testing. Journal of Analytical Toxicology, 2022, 46, 697-704.	1.7	3
6	Structure Elucidation of Urinary Metabolites of Fentanyl and Five Fentanyl Analogs using LC-QTOF-MS, Hepatocyte Incubations and Synthesized Reference Standards. Journal of Analytical Toxicology, 2021, 44, 993-1003.	1.7	12
7	Activation of the μâ€opioid receptor by alicyclic fentanyls: Changes from high potency full agonists to low potency partial agonists with increasing alicyclic substructure. Drug Testing and Analysis, 2021, 13, 169-174.	1.6	7
8	Pharmacogenetic studies of thiopurine methyltransferase genotypeâ€phenotype concordance and effect of methotrexate on thiopurine metabolism. Basic and Clinical Pharmacology and Toxicology, 2021, 128, 52-65.	1.2	8
9	Post-Mortem Metabolomics: A Novel Approach in Clinical Biomarker Discovery and a Potential Tool in Death Investigations. Chemical Research in Toxicology, 2021, 34, 1496-1502.	1.7	11
10	Circumstances, Postmortem Findings, Blood Concentrations and Metabolism in a Series of Methoxyacetylfentanyl-Related Deaths. Journal of Analytical Toxicology, 2021, 45, 760-771.	1.7	6
11	Metabolism of the benzodiazepines norflurazepam, flurazepam, fludiazepam and cinolazepam by human hepatocytes using high-resolution mass spectrometry and distinguishing their intake in authentic urine samples. Forensic Toxicology, 2020, 38, 79-94.	1.4	6
12	5Fâ€MDMBâ€PICA metabolite identification and cannabinoid receptor activity. Drug Testing and Analysis, 2020, 12, 127-135.	1.6	41
13	Femoral blood concentrations of flualprazolam in 33 postmortem cases. Forensic Science International, 2020, 307, 110101.	1.3	28
14	Biotransformation of the New Synthetic Cannabinoid with an Alkene, MDMB-4en-PINACA, by Human Hepatocytes, Human Liver Microsomes, and Human Urine and Blood. AAPS Journal, 2020, 22, 13.	2.2	25
15	Metabolite Profiling of Ortho-, Meta- and Para-Fluorofentanyl by Hepatocytes and High-Resolution Mass Spectrometry. Journal of Analytical Toxicology, 2020, 44, 140-148.	1.7	10
16	In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Science International, 2020, 317, 110553.	1.3	10
17	The influence of ABCC2 polymorphism on erlotinib efflux in the K562 cell line. Pharmacology Research and Perspectives, 2020, 8, e00581.	1.1	3
18	Metabolism of MMB022 and identification of dihydrodiol formation in vitro using synthesized standards. Drug Testing and Analysis, 2020, 12, 1432-1441.	1.6	12

SVANTE VIKINGSSON

#	Article	IF	CITATIONS
19	LC-QTOF-MS Identification of Major Urinary Cyclopropylfentanyl Metabolites Using Synthesized Standards. Journal of Analytical Toxicology, 2019, 43, 607-614.	1.7	14
20	Erlotinib treatment induces cytochrome P450 3A activity in nonâ€small cell lung cancer patients. British Journal of Clinical Pharmacology, 2019, 85, 1704-1709.	1.1	8
21	Correlations between metabolism and structural elements of the alicyclic fentanyl analogs cyclopropyl fentanyl, cyclobutyl fentanyl, cyclopentyl fentanyl, cyclohexyl fentanyl and 2,2,3,3-tetramethylcyclopropyl fentanyl studied by human hepatocytes and LC-QTOF-MS. Archives of Toxicology. 2019. 93. 95-106.	1.9	24
22	Metabolism study for CUMYLâ€4CNâ€BINACA in human hepatocytes and authentic urine specimens: Free cyanide is formed during the main metabolic pathway. Drug Testing and Analysis, 2018, 10, 1270-1279.	1.6	14
23	Synthesis and identifications of potential metabolites as biomarkers of the synthetic cannabinoid AKB-48. Tetrahedron, 2018, 74, 2905-2913.	1.0	11
24	A reassessment of DNA-immunoprecipitation-based genomic profiling. Nature Methods, 2018, 15, 499-504.	9.0	92
25	Fatal Poisonings Associated with New Psychoactive Substances. Handbook of Experimental Pharmacology, 2018, 252, 495-541.	0.9	40
26	ldentifying Metabolites of Meclonazepam by High-Resolution Mass Spectrometry Using Human Liver Microsomes, Hepatocytes, a Mouse Model, and Authentic Urine Samples. AAPS Journal, 2017, 19, 736-742.	2.2	30
27	Synthesis and identification of an important metabolite of AKB-48 with a secondary hydroxyl group on the adamantyl ring. Tetrahedron Letters, 2017, 58, 1456-1458.	0.7	6
28	Simple and cost-effective liquid chromatography-mass spectrometry method to measure dabrafenib quantitatively and six metabolites semi-quantitatively in human plasma. Analytical and Bioanalytical Chemistry, 2017, 409, 3749-3756.	1.9	8
29	In Vitro and In Vivo Metabolite Identification Studies for the New Synthetic Opioids Acetylfentanyl, Acrylfentanyl, Furanylfentanyl, and 4-Fluoro-Isobutyrylfentanyl. AAPS Journal, 2017, 19, 1102-1122.	2.2	76
30	Looking at flubromazolam metabolism from four different angles: Metabolite profiling in human liver microsomes, human hepatocytes, mice and authentic human urine samples with liquid chromatography high-resolution mass spectrometry. Forensic Science International, 2017, 274, 55-63.	1.3	28
31	Combination treatment with 6-mercaptopurine and allopurinol in HepG2 and HEK293 cells – Effects on gene expression levels and thiopurine metabolism. PLoS ONE, 2017, 12, e0173825.	1.1	6
32	In Vivo Cytochrome P450 3A Isoenzyme Activity and Pharmacokinetics of Imatinib in Relation to Therapeutic Outcome in Patients With Chronic Myeloid Leukemia. Therapeutic Drug Monitoring, 2016, 38, 230-238.	1.0	11
33	Identification of ABâ€FUBINACA metabolites in authentic urine samples suitable as urinary markers of drug intake using liquid chromatography quadrupole tandem time of flight mass spectrometry. Drug Testing and Analysis, 2016, 8, 950-956.	1.6	40
34	lmatinib treatment attenuates growth and inflammation of angiotensin II induced abdominal aortic aneurysm. Atherosclerosis, 2016, 249, 101-109.	0.4	33
35	Novel rapid liquid chromatography tandem masspectrometry method for vemurafenib and metabolites in human plasma, including metabolite concentrations at steady state. Biomedical Chromatography, 2016, 30, 1234-1239.	0.8	6
36	Differences in cardiovascular toxicities associated with cigarette smoking and snuff use revealed using novel zebrafish models. Biology Open, 2016, 5, 970-978.	0.6	19

Svante Vikingsson

#	Article	IF	CITATIONS
37	Putting Designer Drugs Back in Pandora's Box: Analytical Challenges and Metabolite Identification. Clinical Chemistry, 2016, 62, 4-5.	1.5	4
38	Using Whole-Exome Sequencing to Identify Genetic Markers for Carboplatin and Gemcitabine-Induced Toxicities. Clinical Cancer Research, 2016, 22, 366-373.	3.2	20
39	A validated liquid chromatography tandem mass spectrometry method for quantification of erlotinib, OSI-420 and didesmethyl erlotinib and semi-quantification of erlotinib metabolites in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107, 186-195.	1.4	25
40	Identification of AKB-48 and 5F-AKB-48 Metabolites in Authentic Human Urine Samples Using Human Liver Microsomes and Time of Flight Mass Spectrometry. Journal of Analytical Toxicology, 2015, 39, 426-435.	1.7	46
41	Increased <i>Rrm2</i> gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice. Genes and Development, 2015, 29, 690-695.	2.7	51
42	Role of cytochrome P450 <i>2C8*3</i> (<i>CYP2C8*3</i>) in paclitaxel metabolism and paclitaxel-induced neurotoxicity. Pharmacogenomics, 2015, 16, 929-937.	0.6	17
43	Novel assay to improve therapeutic drug monitoring of thiopurines in inflammatory bowel disease. Journal of Crohn's and Colitis, 2014, 8, 1702-1709.	0.6	11
44	Single-nucleotide polymorphisms of ABCG2 increase the efficacy of tyrosine kinase inhibitors in the K562 chronic myeloid leukemia cell line. Pharmacogenetics and Genomics, 2014, 24, 52-61.	0.7	34
45	MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature, 2014, 508, 215-221.	13.7	419
46	Monitoring of thiopurine metabolites – A high-performance liquid chromatography method for clinical use. Journal of Pharmaceutical and Biomedical Analysis, 2013, 75, 145-152.	1.4	20
47	Expression Patterns of 17β-Hydroxysteroid Dehydrogenase 14 in Human Tissues. Hormone and Metabolic Research, 2012, 44, 949-956.	0.7	21
48	Increased Sensitivity to Thiopurines in Methylthioadenosine Phosphorylase–Deleted Cancers. Molecular Cancer Therapeutics, 2011, 10, 495-504.	1.9	15
49	The Role of Inosine-5′-Monophosphate Dehydrogenase in Thiopurine Metabolism in Patients With Inflammatory Bowel Disease. Therapeutic Drug Monitoring, 2011, 33, 200-208.	1.0	23
50	A validated and rapid high-performance liquid chromatography method for the quantification of conversion of radio-labelled sex steroids. Hormone Molecular Biology and Clinical Investigation, 2010, 3, 375-81.	0.3	0
51	How Should Thiopurine Treatment be Monitored?— Methodological Aspects. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 278-283.	0.4	5
52	Monitoring of Thiopurine Metabolites in Patients With Inflammatory Bowel Disease-What Is Actually Measured?. Therapeutic Drug Monitoring, 2009, 31, 345-350.	1.0	28
53	Retention of opioids and their glucuronides on a combined zwitterion and hydrophilic interaction stationary phase. Journal of Chromatography A, 2008, 1187, 46-52.	1.8	28