Ken-ichi Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4676780/publications.pdf Version: 2024-02-01

KENJCHILEE

#	Article	lF	CITATIONS
1	Cooperative Recognition of Internationally Disseminated Ceftriaxone-Resistant <i>Neisseriagonorrhoeae</i> Strain. Emerging Infectious Diseases, 2018, 24, .	4.3	170
2	Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evolutionary Biology, 2011, 11, 322.	3.2	87
3	Distribution and Relationships of Antimicrobial Resistance Determinants among Extended-Spectrum-Cephalosporin-Resistant or Carbapenem-Resistant Escherichia coli Isolates from Rivers and Sewage Treatment Plants in India. Antimicrobial Agents and Chemotherapy, 2016, 60, 2972-2980.	3.2	87
4	Impact of wastewater from different sources on the prevalence of antimicrobial-resistant Escherichia coli in sewage treatment plants in South India. Ecotoxicology and Environmental Safety, 2015, 115, 203-208.	6.0	65
5	Rapid and Effective DNA Extraction Method with Bead Grindingfor a Large Amount of Fungal DNA. Journal of Food Protection, 2010, 73, 1077-1084.	1.7	54
6	Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates. Journal of Antimicrobial Chemotherapy, 2019, 74, 1812-1819.	3.0	50
7	Genomic surveillance of Neisseria gonorrhoeae to investigate the distribution and evolution of antimicrobial-resistance determinants and lineages. Microbial Genomics, 2018, 4, .	2.0	47
8	Characteristics of Salmonella enterica Serovar 4,[5],12:i:- as a Monophasic Variant of Serovar Typhimurium. PLoS ONE, 2014, 9, e104380.	2.5	41
9	Prevalence of <i>Salmonella</i> , <i>Yersinia</i> and <i>Campylobacter</i> spp. in Feral Raccoons (<i>Procyon lotor</i>) and Masked Palm Civets (<i>Paguma larvata</i>) in Japan. Zoonoses and Public Health, 2011, 58, 424-431.	2.2	40
10	A novel multiplex PCR assay for <i>Salmonella</i> subspecies identification. Journal of Applied Microbiology, 2009, 107, 805-811.	3.1	37
11	Variation in Stress Resistance Patterns among <i>stx</i> Genotypes and Genetic Lineages of Shiga Toxin-Producing Escherichia coli O157. Applied and Environmental Microbiology, 2012, 78, 3361-3368.	3.1	37
12	Neisseria cinerea with High Ceftriaxone MIC Is a Source of Ceftriaxone and Cefixime Resistance-Mediating <i>penA</i> Sequences in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	37
13	Virulence Gene Profiles and Population Genetic Analysis for Exploration of Pathogenic Serogroups of Shiga Toxin-Producing Escherichia coli. Journal of Clinical Microbiology, 2013, 51, 4022-4028.	3.9	33
14	Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Neglected Tropical Diseases, 2021, 15, e0010063.	3.0	30
15	Population structure of Escherichia coli O26 : H11 with recent and repeated stx2 acquisition in multiple lineages. Microbial Genomics, 2017, 3, .	2.0	29
16	Differential dynamics and impacts of prophages and plasmids on the pangenome and virulence factor repertoires of Shiga toxin-producing Escherichia coli O145:H28. Microbial Genomics, 2020, 6, .	2.0	28
17	Virulence characteristics of Yersinia pseudotuberculosis isolated from breeding monkeys in Japan. Veterinary Microbiology, 2008, 129, 404-409.	1.9	26
18	Multivariate Analyses Revealed Distinctive Features Differentiating Human and Cattle Isolates of Shiga Toxin-Producing Escherichia coli O157 in Japan. Journal of Clinical Microbiology, 2011, 49, 1495-1500.	3.9	26

Ken-ichi Lee

#	Article	IF	CITATIONS
19	Identification of a New Virulent Clade in Enterohemorrhagic Escherichia coli O26:H11/H- Sequence Type 29. Scientific Reports, 2017, 7, 43136.	3.3	25
20	Outbreak of Legionnaire's Disease Caused by <i>Legionella pneumophila</i> Serogroups 1 and 13. Emerging Infectious Diseases, 2017, 23, 349-351.	4.3	25
21	Nationwide investigation of Shiga toxin-producing <i>Escherichia coli</i> among cattle in Japan revealed the risk factors and potentially virulent subgroups. Epidemiology and Infection, 2017, 145, 1557-1566.	2.1	24
22	Evaluation of genetic markers for identifying isolates of the species of the genus Fusarium. Journal of the Science of Food and Agriculture, 2011, 91, 2500-2504.	3.5	23
23	A Geographically Widespread Outbreak Investigation and Development of a Rapid Screening Method Using Whole Genome Sequences of Enterohemorrhagic Escherichia coli O121. Frontiers in Microbiology, 2017, 8, 701.	3.5	23
24	Emergence of Resistance Mutations in Salmonella enterica Serovar Typhi Against Fluoroquinolones. Open Forum Infectious Diseases, 2017, 4, ofx230.	0.9	18
25	Whole-Genome Sequence Analysis of Streptococcus pneumoniae Strains That Cause Hospital-Acquired Pneumonia Infections. Journal of Clinical Microbiology, 2018, 56, .	3.9	15
26	Effective Surveillance Using Multilocus Variable-Number Tandem-Repeat Analysis and Whole-Genome Sequencing for Enterohemorrhagic Escherichia coli O157. Applied and Environmental Microbiology, 2019, 85, .	3.1	13
27	Phylogenetic and genetic characterization of Treponema pallidum strains from syphilis patients in Japan by whole-genome sequence analysis from global perspectives. Scientific Reports, 2021, 11, 3154.	3.3	12
28	Single Circular Chromosome Identified from the Genome Sequence of the Vibrio cholerae O1 bv. El Tor Ogawa Strain V060002. Genome Announcements, 2018, 6, .	0.8	11
29	<i>Penicillium camemberti</i> and <i>Penicillium roqueforti</i> Enhance the Growth and Survival of Shiga Toxinâ€Producing <i>Escherichia coli</i> O157 under Mild Acidic Conditions. Journal of Food Science, 2012, 77, M102-7.	3.1	9
30	Extensive amplification of GI-VII-6, a multidrug resistance genomic island of Salmonella enterica serovar Typhimurium, increases resistance to extended-spectrum cephalosporins. Frontiers in Microbiology, 2015, 6, 78.	3.5	9
31	The global population structure and evolutionary history of the acquisition of major virulence factor-encoding genetic elements in Shiga toxin-producing Escherichia coli O121:H19. Microbial Genomics, 2021, 7, .	2.0	9
32	Global distribution of epidemic-related Shiga toxin 2 encoding phages among enteroaggregative Escherichia coli. Scientific Reports, 2020, 10, 11738.	3.3	8
33	Additional Og-Typing PCR Techniques Targeting Escherichia coli-Novel and <i>Shigella</i> -Unique O-Antigen Biosynthesis Gene Clusters. Journal of Clinical Microbiology, 2020, 58, .	3.9	8
34	Spread and change in stress resistance of <scp>S</scp> higa toxinâ€producing <i><scp>E</scp>scherichia coli</i> â€ <scp>O</scp> 157 on fungal colonies. Microbial Biotechnology, 2014, 7, 621-629.	4.2	7
35	Characterization of two Neisseria gonorrhoeae strains with high-level azithromycin resistance isolated in 2015 and 2018 in Japan. Sexually Transmitted Diseases, 2020, Publish Ahead of Print, e85-e87.	1.7	7
36	An outbreak of food poisoning due to <i>Escherichia coli</i> serotype O7:H4 carrying <i>astA</i> for enteroaggregative <i>E. coli</i> heat-stable enterotoxin1 (EAST1). Epidemiology and Infection, 2021, 149, e244.	2.1	7

Ken-ichi Lee

#	Article	IF	CITATIONS
37	Seroepidemiological Survey of Pathogenic Yersinia in Breeding Squirrel Monkeys in Japan. Journal of Veterinary Medical Science, 2010, 72, 981-984.	0.9	6
38	Analysis of Consumer Complaints Related to Microbial Contamination in Soft Drinks. Shokuhin Eiseigaku Zasshi Journal of the Food Hygienic Society of Japan, 2009, 50, 315-320.	0.2	5
39	Quantitative Analysis of Mycoflora on Commercial Domestic Fruits in Japan. Journal of Food Protection, 2011, 74, 1488-1499.	1.7	5
40	Survival of Pathogenic Yersinia enterocolitica in Vacuum-packed or Non-vacuum-packed Pork at Low Temperature. Biocontrol Science, 2008, 13, 139-144.	0.8	4
41	Rapid Detection of Shiga Toxin-Producing Escherichia coli in Ground Beef by an Immunochromatography Kit in Combination with Short-Term Enrichment and Treatment for Shiga Toxin Release. Biocontrol Science, 2011, 16, 159-164.	0.8	4
42	Multiple-Locus Variable-Number Tandem Repeat Analysis Scheme for Non-O157 Shiga Toxin-Producing <i>Escherichia coli</i> : Focus on Serogroups O103, O121, O145, O165, and O91. Japanese Journal of Infectious Diseases, 2020, 73, 481-490.	1.2	4
43	Enumeration of Fungi in Fruits by the Most Probable Number Method. Journal of Food Science, 2010, 75, M564-M567.	3.1	3
44	Whole-Genome Sequencing of Shiga Toxin–Producing <i>Escherichia coli</i> OX18 from a Fatal Hemolytic Uremic Syndrome Case. Emerging Infectious Diseases, 2021, 27, 1509-1512.	4.3	3
45	RNAâ€binding protein Hfq downregulates locus of enterocyte effacementâ€encoded regulators independent of small regulatory RNA in enterohemorrhagic <i>Escherichia coli</i> . Molecular Microbiology, 2022, 117, 86-101.	2.5	3
46	Enterohaemorrhagic Escherichia coli O121:H19 acquired an extended-spectrum β-lactamase gene during the development of an outbreak in two nurseries. Microbial Genomics, 2019, 5, .	2.0	3
47	Complete Genome Sequence of an Enterohemorrhagic Escherichia coli O111:H8 Strain Recovered from a Large Outbreak in Japan Associated with Consumption of Raw Beef. Microbiology Resource Announcements, 2019, 8, .	0.6	3
48	Whole-Genome Sequence of CMY-2 β-Lactamase-Producing Salmonella enterica Serovar Typhimurium Strain L-3553. Genome Announcements, 2014, 2, .	0.8	1
49	Complete Genome Sequence of a Sequence Type 4846 Streptococcus pneumoniae Serotype 12F Strain Isolated from a Meningitis Case in Japan. Microbiology Resource Announcements, 2019, 8, .	0.6	1