List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4676729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development and Characterization of in-situ AA2024-Al3NiCu Composites. International Journal of Metalcasting, 2023, 17, 109-123.	1.9	3
2	Importance of Individual Evaluation of Crystallographic Texture and Microstructure Effects on Biocompatibility and Corrosion Performance of Ti6Al4V Alloy. Metals and Materials International, 2023, 29, 343-356.	3.4	5
3	Effect of Temperature and Strain on the Microstructure and Mechanical Properties of AA6061/AZ31 Laminated Composite Produced by Hot Forge Bonding. Transactions of the Indian Institute of Metals, 2022, 75, 293-306.	1.5	3
4	Microstructure, mechanical, and electrical properties of the pure copper tubes processed by hydro-assisted tube pressing (HATP) as a new severe plastic deformation method. International Journal of Advanced Manufacturing Technology, 2022, 118, 3161-3182.	3.0	0
5	Investigation of microstructure, crystallographic texture, and mechanical behavior of magnesium-based nanocomposite fabricated via multi-pass FSP for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104894.	3.1	27
6	Synergistic effects of hybrid (HA+Ag) particles and friction stir processing in the design of a high-strength magnesium matrix bio-nano composite with an appropriate texture for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104983.	3.1	28
7	Achieving high strength and superior ductility in Al–Si alloy by cold rolling and friction stir processing. Journal of Alloys and Compounds, 2022, 896, 163102.	5.5	9
8	Effect of friction surfacing on the microstructural and wear characteristics of Al-Cu-Mg alloy coating reinforced by nickel aluminide. Intermetallics, 2022, 142, 107440.	3.9	6
9	Manufacturing of high-toughness Al–Si alloy by rolling and friction stir processing: Effect of traverse speed. CIRP Journal of Manufacturing Science and Technology, 2022, 37, 19-36.	4.5	4
10	Effect of single roll drive cross rolling on the microstructure, crystallographic texture, and mechanical behavior of Al–Zn–Mg–Cu alloy. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	3.8	8
11	Effects of pre- and post-friction surfacing heat treatment on microstructure and corrosion behavior of nickel-aluminide reinforced Al-Cu-Mg alloy. Journal of Alloys and Compounds, 2022, 906, 164211.	5.5	18
12	Effect of friction surfacing parameters on the microstructural, mechanical properties, and wear characteristic of Al-Cu-Mg alloy coating reinforced by nickel aluminide. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	3.8	2
13	Effect of copper reinforcement on the microstructure, macrotexture, and wear properties of a friction-surfaced Al-Cu-Mg coating. Surface and Coatings Technology, 2022, 438, 128380.	4.8	7
14	Resistance spot welding of high-strength DP steel and nano/ultrafine-grained IF steel sheets. Materials Chemistry and Physics, 2022, 281, 125909.	4.0	10
15	Manufacturing of pure copper with extraordinary strength-ductility-conductivity balance by cryorolling and annealing. CIRP Journal of Manufacturing Science and Technology, 2022, 37, 623-632.	4.5	5
16	Improvement of the strength-ductility-toughness balance in interstitial-free steel by gradient microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143237.	5.6	11
17	The effect of crystallographic texture as a distinct effective parameter on the biocorrosion performance of Ti6Al4V alloy in PBS solution. Corrosion Science, 2021, 179, 109100.	6.6	17
18	EBSD study of the microstructure and texture evolution in an Al–Si–Cu alloy processed by route A ECAP. Journal of Alloys and Compounds, 2021, 858, 157651.	5.5	16

#	Article	IF	CITATIONS
19	Effect of post-annealing on the microstructure and mechanical properties of nanostructured copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140666.	5.6	18
20	Effect of route BC-ECAP on microstructural evolution and mechanical properties of Al–Si–Cu alloy. Journal of Materials Science, 2021, 56, 3535-3550.	3.7	10
21	A new method to produce dual-phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140695.	5.6	11
22	Investigation of mechanical and microstructural properties of pure copper processed by combined extrusion-equal channel angular pressing (C-Ex-ECAP). International Journal of Advanced Manufacturing Technology, 2021, 113, 2175-2191.	3.0	8
23	Simultaneous enhancement of strength and ductility in ferrite-martensite steel via increasing the martensite fraction. Materials Chemistry and Physics, 2021, 259, 124204.	4.0	18
24	Cellular automaton modeling of dynamic recrystallization in Al-Mg alloy coating fabricated using the friction surfacing process. Surface and Coatings Technology, 2021, 407, 126784.	4.8	13
25	Formation of highly uniform tin oxide nanochannels by electrochemical anodization on cold sprayed tin coatings. Surface and Coatings Technology, 2021, 410, 126978.	4.8	4
26	Effects of pre-heat treatment of the consumable rod on the microstructural and mechanical properties of the friction surfaced Al-Cu-Mg alloy over pure aluminum. Surface and Coatings Technology, 2021, 410, 126954.	4.8	17
27	In Vitro Corrosion Anisotropy Assessment of Ti6Al4V Bimodal Microstructure due to Crystallographic Texture. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2859-2872.	2.2	3
28	Effect of gradient microstructure on the mechanical properties of aluminum alloy. Materials Characterization, 2021, 174, 111023.	4.4	9
29	Textural Evaluation of Al–Si–Cu Alloy Processed by Route BC-ECAP. Metals and Materials International, 2021, 27, 2756-2772.	3.4	3
30	Influence of Thermomechanical Processing on the Microstructure and Tensile Behavior of Solution-Treated Al-18%Si-4.5%Cu Alloy. Journal of Materials Engineering and Performance, 2021, 30, 4651-4668.	2.5	4
31	Effect of mechtrode rotational speed on friction surfacing of AA2024 on AA1050 substrate. CIRP Journal of Manufacturing Science and Technology, 2021, 33, 209-221.	4.5	20
32	Influence of Deformation and Post-Annealing Treatment on the Microstructure and Mechanical Properties of Austenitic Stainless Steel. Transactions of the Indian Institute of Metals, 2021, 74, 1799.	1.5	4
33	Effects of Ti particles and T6 heat treatment on the microstructure and mechanical properties of A356 alloy fabricated by compocasting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 818, 141443.	5.6	31
34	Achieving high strength-ductility in pure copper by cold rolling and submerged friction stir processing (SFSP). Journal of Manufacturing Processes, 2021, 67, 496-502.	5.9	13
35	Effect of traverse and rotational speeds on microstructure, texture, and mechanical properties of friction stir processed AZ91 alloy. Materials Characterization, 2021, 178, 111235.	4.4	31
36	Water-assisted crystallization of nanoporous tin oxide formed by anodic oxidation on cold sprayed tin coating. Journal of Alloys and Compounds, 2021, 876, 160207.	5.5	9

#	Article	IF	CITATIONS
37	Effect of friction surfacing parameters on microstructure and mechanical properties of solid-solutionized AA2024 aluminium alloy cladded on AA1050. Materials Chemistry and Physics, 2021, 269, 124756.	4.0	17
38	Asymmetric cold rolling of AA7075 alloy: The evolution of microstructure, crystallographic texture, and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141801.	5.6	39
39	Pre-strain assisted low heat-input friction stir processing to achieve ultrafine-grained copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141958.	5.6	14
40	Manufacturing of gradient Al/SiC composite wire by friction stir back extrusion. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 735-743.	4.5	10
41	Effect of hot rolling on microstructure, crystallographic texture, and hardness of AZ31 alloy. Materials Chemistry and Physics, 2021, 273, 125130.	4.0	15
42	Effects of Ni on the microstructure, mechanical and tribological properties of AA2024-Al3NiCu composite fabricated by stir casting process. Journal of Alloys and Compounds, 2021, 887, 161433.	5.5	18
43	Effect of Route BC Equal-Channel Angular Pressing on the Microstructure, Microtexture, and Homogeneity of Al-18%Si-4.5%Cu Alloy. Journal of Materials Engineering and Performance, 2021, 30, 1577-1601.	2.5	1
44	Effect of Electric Current Pulse Type on Springback, Microstructure, Texture, and Mechanical Properties During V-Bending of AA2024 Aluminum Alloy. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	2.2	9
45	Effects of Zn powder on alloying during friction surfacing of Al–Mg alloy. Journal of Alloys and Compounds, 2020, 818, 152823.	5.5	18
46	Effect of non-isothermal aging on microstructure and mechanical properties of friction surfaced AA5083-15wt%Zn composites. Surface and Coatings Technology, 2020, 384, 125307.	4.8	13
47	Microstructure and mechanical properties of IF/St52 steel composite produced by friction stir lap welding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138775.	5.6	12
48	Comparative investigation of microstructure and crystallographic texture effect on Ti6Al4V alloy mechanical properties. Materials Chemistry and Physics, 2020, 256, 123725.	4.0	1
49	Effects of prior ECAP process on the dynamic impact behaviors of hypereutectic Al-Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139902.	5.6	19
50	Improvement of strength-ductility balance of SAE 304 stainless steel by asymmetric cross rolling. Materials Chemistry and Physics, 2020, 256, 123668.	4.0	16
51	Microstructural, tribological, and texture analysis of friction surfaced Al-Mg-Cu clad on AA1050 alloy. Surface and Coatings Technology, 2020, 397, 125980.	4.8	12
52	Influence of Crystallographic Texture on the Corrosion Product Morphology and Corrosion Rate of AZ31 Plate in Simulated Body Fluid. Journal of Materials Engineering and Performance, 2020, 29, 3824-3830.	2.5	5
53	A novel technique to form gradient microstructure in AA5052 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139075.	5.6	22
54	Fabrication of a 2-layer laminated steel composite by friction stir additive manufacturing. Journal of Manufacturing Processes, 2020, 51, 110-121.	5.9	29

#	Article	lF	CITATIONS
55	A new 1.2ÂGPa-strength plain low carbon steel with high ductility obtained by SRDR of martensite and intercritical annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139584.	5.6	22
56	Mechanical alloying by friction surfacing process. Materials Letters, 2019, 254, 394-397.	2.6	17
57	Nanostructured copper matrix composite with extraordinary strength and high electrical conductivity produced by asymmetric cryorolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138146.	5.6	25
58	Microstructure and mechanical properties of AA6063 aluminum alloy wire fabricated by friction stir back extrusion (FSBE) process. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 1005-1012.	4.9	10
59	Modeling and experimental investigation on friction surfacing of aluminum alloys. Journal of Alloys and Compounds, 2019, 805, 57-68.	5.5	37
60	Effect of ECAP on microstructure and tensile properties of A390 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2019, 29, 931-940.	4.2	35
61	High-strength and high-conductivity nanograined copper fabricated by partial homogenization and asymmetric rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 768, 138451.	5.6	14
62	Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138433.	5.6	41
63	FSBE process: A technique for fabrication of aluminum wire with randomly oriented fine grains. Materials Letters, 2019, 241, 68-71.	2.6	8
64	Modeling and experimental study of friction surfacing of AA2024 alloy over AA1050 plates. Materials Research Express, 2019, 6, 0865g2.	1.6	26
65	Asymmetric cold rolling: A technique for achieving non-basal textures in AZ91 alloy. Materials Letters, 2019, 249, 143-146.	2.6	17
66	Effect of SiC nanoparticles on the microstructure and texture of friction stir welded AA2024/AA6061. Materials Characterization, 2019, 152, 169-179.	4.4	47
67	Texture–Microstructure Correlation in Hot-Rolled AZ31. Transactions of the Indian Institute of Metals, 2019, 72, 1775-1781.	1.5	0
68	Texture and microstructure evolution of A390 aluminum alloy during ECAP. Materials Research Express, 2019, 6, 076536.	1.6	13
69	The study of thermomechanical and microstructural issues in dissimilar FSW of AA6061 wrought and A390 cast alloys. Journal of Manufacturing Processes, 2019, 41, 168-176.	5.9	26
70	Effect of strain path during cold rolling on the microstructure, texture, and mechanical properties of AA2024 aluminum alloy. Materials Research Express, 2019, 6, 066514.	1.6	24
71	Effect of tool pin geometry and weld pass number on microstructural, natural aging and mechanical behaviour of SiC-incorporated dissimilar friction-stir-welded aluminium alloys. Sadhana - Academy Proceedings in Engineering Sciences, 2019, 44, 1.	1.3	9
72	Effect of asymmetric cold rolling on the microstructure, texture, and mechanical properties of the AZ91 alloy. Materials Research Express, 2019, 6, 036501.	1.6	4

#	Article	IF	CITATIONS
73	Four unusual texture transitions in high purity copper during cold deformation followed by quenching. Materials Research Express, 2019, 6, 016513.	1.6	1
74	Intensifying Goss/Brass texture ratio in AA2024 by asymmetric cold rolling. Materials Letters, 2018, 219, 229-232.	2.6	27
75	Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. Journal of Manufacturing Processes, 2018, 32, 1-10.	5.9	108
76	Nanostructured AA5005/Al ₂ O ₃ composite manufactured by anodising and accumulative roll bonding. Materials Science and Technology, 2018, 34, 1657-1665.	1.6	7
77	Microstructure and mechanical properties in nano and microscale SiC-included dissimilar friction stir welding of AA6061-AA2024. Materials Science and Technology, 2018, 34, 388-401.	1.6	17
78	Effect of β–Mg17Al12 phase on microstructure, texture and mechanical properties of AZ91 alloy processed by asymmetric hot rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 81-89.	5.6	57
79	Asymmetric cross rolling (ACR): A novel technique for enhancement of Goss/Brass texture ratio in Al-Cu-Mg alloy. Materials Characterization, 2018, 142, 352-364.	4.4	42
80	Unexpected Cube texture in cold rolling of copper. Materials Letters, 2017, 202, 111-115.	2.6	26
81	Effect of pre and post welding heat treatment in SiC-fortified dissimilar AA6061-AA2024 FSW butt joint. Journal of Manufacturing Processes, 2017, 30, 97-105.	5.9	55
82	Effect of Particles on Continuous and Discontinuous Recrystallization of Nanostructured Interstitial Free Steel. Jom, 2016, 68, 271-278.	1.9	5
83	Annealing texture of nanostructured steel-based composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 604-614.	5.6	5
84	Annealing texture of nanostructured IF steel. Materials Characterization, 2015, 106, 411-419.	4.4	14
85	Production of nanograin microstructure in steel nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 638, 143-151.	5.6	12
86	Annealing Texture of Nanostructured Steel-Based Nanocomposite. Journal of Materials Engineering and Performance, 2015, 24, 3201-3208.	2.5	3
87	Strengthening mechanisms in nanostructured interstitial free steel deformed to high strain. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 656-662.	5.6	27
88	On the Achievement of Nanostructured Interstitial Free Steel by Four-Layer Accumulative Roll Bonding Process at Room Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4013-4019.	2.2	19
89	Microstructural evolution of nanostructured steel-based composite fabricated by accumulative roll bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 298-306.	5.6	22
90	Hybrid composites produced by anodizing and accumulative roll bonding (ARB) processes. Ceramics International, 2014, 40, 10027-10035.	4.8	21

#	Article	IF	CITATIONS
91	The effect of alumina content on the mechanical properties of hybrid composites fabricated by ARB process. Ceramics International, 2014, 40, 10489-10498.	4.8	23
92	Effect of stacking fault energy on deformation texture development of nanostructured materials produced by the ARB process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 598, 263-276.	5.6	68
93	Effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding process. Materials & Design, 2014, 54, 168-173.	5.1	42
94	Comparison of Microparticles and Nanoparticles Effects on the Bonding of Roll Bonded IF Steel. Transactions of the Indian Institute of Metals, 2014, 67, 659-665.	1.5	3
95	The effect of SiC nanoparticles on deformation texture of ARB-processed steel-based nanocomposite. Materials Characterization, 2014, 93, 150-162.	4.4	12
96	Wear behavior of nanostructured Al/Al2O3 composite fabricated via accumulative roll bonding (ARB) process. Materials & Design, 2014, 59, 540-549.	5.1	72
97	Effect of alloy composition, stacking fault energy, second phase particles, initial thickness, and measurement position on deformation texture development of nanostructured FCC materials fabricated via accumulative roll bonding process. Materials Science & Engineering A: Structural Materials: Properties. Microstructure and Processing, 2014, 598, 77-97.	5.6	33
98	Fabrication of Nano/Ultra-Fine Grained IF Steel via SPD Processes: a Review. Transactions of the Indian Institute of Metals, 2014, 67, 787-802.	1.5	16
99	Comparison of microparticles and nanoparticles effects on the microstructure and mechanical properties of steel-based composite and nanocomposite fabricated via accumulative roll bonding process. Materials & Design, 2014, 56, 359-367.	5.1	41
100	Fracture of steel nanocomposite made using accumulative roll bonding. Materials Science and Technology, 2014, 30, 1973-1982.	1.6	10
101	Texture Development of ARB-Processed Steel-Based Nanocomposite. Journal of Materials Engineering and Performance, 2014, 23, 4436-4445.	2.5	14
102	Comparison of microparticles and nanoparticles effects on deformation texture of steel-based composite and nanocomposite fabricated by the ARB process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 173-187.	5.6	14
103	Effect of stacking fault energy on mechanical properties of nanostructured FCC materials processed by the ARB process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 443-450.	5.6	45
104	Effect of SiC Nanoparticles on Bond Strength of Cold Roll Bonded IF Steel. Journal of Materials Engineering and Performance, 2013, 22, 3348-3356.	2.5	11
105	Fabrication of nanoparticle strengthened IF steel via ARB process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 583, 20-24.	5.6	30
106	Texture Evolution of Nanostructured Aluminum/Copper Composite Produced by the Accumulative Roll Bonding and Folding Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1587-1598.	2.2	25
107	Effect of stacking fault energy on nanostructure formation under accumulative roll bonding (ARB) process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 191-196.	5.6	38
108	Investigation of nanostructured aluminum/copper composite produced by accumulative roll bonding and folding process. Materials & Design, 2013, 51, 274-279.	5.1	66

#	Article	IF	CITATIONS
109	On the use of accumulative roll bonding process to develop nanostructured aluminum alloy 5083. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 145-151.	5.6	93
110	Textural evolution of nanostructured AA5083 produced by ARB. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 351-357.	5.6	41
111	Comparison of the Microstructure and Mechanical Properties of As-Cast A356/SiC MMC Processed by ARB and CAR Methods. Journal of Materials Engineering and Performance, 2012, 21, 1249-1253.	2.5	40
112	Fabrication of MMC Strip by CRB Process. Journal of Materials Engineering and Performance, 2012, 21, 859-864.	2.5	10
113	Investigation of nanostructured Al/Al2O3 composite produced by accumulative roll bonding process. Materials & Design, 2012, 35, 37-42.	5.1	125
114	Microstructure and mechanical properties of Al/SiO2 composite produced by CAR process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 275-281.	5.6	32
115	The influence of TiO2 nano-particles on bond strength of cold roll bonded aluminum strips. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 367-374.	5.6	39
116	Nano/Ultrafine Structured AA1100 by ARB Process. Materials and Manufacturing Processes, 2011, 26, 1352-1356.	4.7	43
117	Cold roll bonding bond strengths: Review. Materials Science and Technology, 2011, 27, 1101-1108.	1.6	134
118	Microstructure and mechanical properties of Al/Al ₂ O ₃ MMC produced by anodising and cold roll bonding. Materials Science and Technology, 2011, 27, 1648-1652.	1.6	10
119	Manufacturing of High-Performance Al356/SiCpComposite by CAR Process. Materials and Manufacturing Processes, 2011, 26, 902-907.	4.7	37
120	CAR process: A technique for significant enhancement of as-cast MMC properties. Materials Characterization, 2011, 62, 1228-1234.	4.4	41
121	Texture development in Al/Al2O3 MMCs produced by anodizing and ARB processes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3573-3580.	5.6	44
122	The Role of Surface Preparation Parameters on Cold Roll Bonding of Aluminum Strips. Journal of Materials Engineering and Performance, 2011, 20, 191-197.	2.5	70
123	Tribocorrosion Behavior of Aluminum/Alumina Composite Manufactured by Anodizing and ARB Processes. Journal of Materials Engineering and Performance, 2011, 20, 1600-1605.	2.5	10
124	Using ARB process as a solution for dilemma of Si and SiCp distribution in cast Al–Si/SiCp composites. Journal of Materials Processing Technology, 2011, 211, 1159-1165.	6.3	54
125	Effect of particle size on microstructure and mechanical properties of composites produced by ARB process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2143-2148.	5.6	123
126	Significant improvement of semi-solid microstructure and mechanical properties of A356 alloy by ARB process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2495-2501.	5.6	63

#	Article	IF	CITATIONS
127	Fabrication and characterization of Al/SiCp composites by CAR process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4462-4467.	5.6	52
128	Tribocorrosion behaviour of Al/Al ₂ O ₃ MMC produced by ARB process. Tribology - Materials, Surfaces and Interfaces, 2011, 5, 10-15.	1.4	11
129	An alternative method of processing MMCs by CAR process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2720-2724.	5.6	70
130	Effect of ARB process on textural evolution of AA1100 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7068-7073.	5.6	63
131	Application of ARB process for manufacturing high-strength, finely dispersed and highly uniform Cu/Al2O3 composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7430-7435.	5.6	119
132	Investigation of the parameters of the cold roll bonding (CRB) process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2320-2326.	5.6	141
133	Application of anodizing and CAR processes for manufacturing Al/Al2O3 composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3857-3863.	5.6	60
134	Effect of Al2O3 nano-particles on the bond strength in CRB process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4858-4863.	5.6	55
135	Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process. Materials & Design, 2010, 31, 4508-4513.	5.1	92
136	High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes. Materials & Design, 2010, 31, 4816-4822.	5.1	136
137	Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4146-4151.	5.6	206
138	Influence of Stacking Fault Energy on the Grain Size of FCC Metals Fabricated by Accumulative Roll Bonding Process. Advanced Materials Research, 0, 1064, 131-137.	0.3	3
139	An experimental and theoretical investigation of thermo-mechanical issues in friction surfacing of Al-Mg aluminium alloys: material flow and residual stress. Modelling and Simulation in Materials Science and Engineering, 0, , .	2.0	7
140	Microstructure-mechanical properties evaluation of AISI 304 steel during back-annealing. Canadian Metallurgical Quarterly, 0, , 1-9.	1.2	0