William E Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4676728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor. Physics of Fluids, 2015, 27, .	4.0	118
2	Spontaneous Longitudinal Combustion Instability in a Continuously-Variable Resonance Combustor. Journal of Propulsion and Power, 2012, 28, 876-887.	2.2	112
3	Combustion Instability with a Single-Element Swirl Injector. Journal of Propulsion and Power, 2007, 23, 1102-1112.	2.2	77
4	Analysis of Self-Excited Combustion Instabilities Using Two- and Three-Dimensional Simulations. Journal of Propulsion and Power, 2013, 29, 396-409.	2.2	75
5	The use of OH* and CH* as heat release markers in combustion dynamics. International Journal of Spray and Combustion Dynamics, 2017, 9, 409-423.	1.0	60
6	Analysis of Self-Excited Combustion Instabilities Using Decomposition Techniques. AIAA Journal, 2016, 54, 2791-2807.	2.6	48
7	Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor. Combustion and Flame, 2020, 213, 211-225.	5.2	47
8	Experimental Study of High-Frequency Combustion Instability in a Continuously Variable Resonance Combustor (CVRC). , 2009, , .		44
9	Comparative Evaluation Between Experiment and Simulation for a Transverse Instability. Journal of Propulsion and Power, 2015, 31, 1696-1706.	2.2	40
10	Analysis of Self-Excited Combustion Instability using a Combination of Two- and Three-Dimensional Simulations. , 2012, , .		37
11	Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor. Chaos, 2019, 29, 103115.	2.5	34
12	Approaches for Comparing Numerical Simulation of Combustion Instability and Flame Imaging. Journal of Propulsion and Power, 2016, 32, 279-294.	2.2	22
13	Coupled interaction between acoustics and unsteady flame dynamics during the transition to thermoacoustic instability in a multi-element rocket combustor. Combustion and Flame, 2022, 240, 112047.	5.2	17
14	Combustion Dynamics in a Single-Element Lean Direct Injection Gas Turbine Combustor. Combustion Science and Technology, 2020, 192, 2371-2398.	2.3	15
15	Recurrence analysis of slow–fast systems. Chaos, 2020, 30, 063152.	2.5	12
16	Investigation into the coherence of flame intensity oscillations in a model multi-element rocket combustor using complex networks. Physics of Fluids, 2022, 34, .	4.0	9
17	A model combustor for studying a reacting jet in an oscillating crossflow. Review of Scientific Instruments, 2017, 88, 065112.	1.3	8
18	Multifidelity Framework for Modeling Combustion Dynamics. AIAA Journal, 2019, 57, 2055-2068.	2.6	7

#	Article	IF	CITATIONS
19	Modeling of Transverse Combustion Instability. , 2019, , .		7
20	Combustion Response of Shear Coaxial Injectors to Transverse Combustion Instabilities. , 2020, , .		5
21	Experimental Investigation of Transverse Combustion Instabilities in a High Pressure Multi-Element Combustor. , 2016, , .		4
22	Flamelet Modeling Studies of a Continuously Variable Resonance Combustor. , 2016, , .		4
23	Large Eddy Simulations of a Liquid Rocket Injector Under Multiple Operating Conditions. , 2020, , .		4
24	Investigation of Combustion Instabilities in a Full Flow Staged Combustion Model Rocket Combustor. , 2019, , .		3
25	Extraction of response function from numerical simulations and their use for longitudinal combustion intsbility modeling. , 2017, , .		2
26	Exploration of POD-Galerkin Techniques for Developing Reduced Order Models of Nonlinear Euler Equations. , 2017, , .		2
27	Investigating Heat Release Dynamics in a Self-Excited Unstable Combustor Using High Fidelity Chemiluminescence Measurements and Modeling. , 2018, , .		2
28	Transverse Combustion Instabilities in a High Pressure Multi-Element Combustor. , 2019, , .		2
29	Combustion instability modeling using multi-mode flame transfer functions and a nonlinear Euler solver. International Journal of Spray and Combustion Dynamics, 2020, 12, 175682772095032.	1.0	2
30	Detailed Measurement of Oxidizer-Rich Staged Combustion Injector Dynamics in Model Rocket Combustors. AIAA Journal, 2022, 60, 1211-1226.	2.6	2
31	Exploration of POD-Galerkin Techniques for Developing Reduced Order Models of Nonlinear Euler Equations. , 2017, , .		1
32	Exploration of POD-Galerkin Techniques for Developing Combustion Response Functions. , 2016, , .		0
33	Analytical and numerical solution of the pressure response to an unsteady heat release pulse in 1D. Combustion and Flame 2021, 226, 505-522	5.2	О