Sandhya Mishra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4676403/publications.pdf

Version: 2024-02-01

394421 552781 2,469 31 19 26 citations h-index g-index papers 31 31 31 1728 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. Journal of Hazardous Materials, 2022, 426, 127841.	12.4	55
2	Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere, 2022, 294, 133609.	8.2	68
3	Microbial Degradation of Aldrin and Dieldrin: Mechanisms and Biochemical Pathways. Frontiers in Microbiology, 2022, 13, 713375.	3.5	18
4	Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. Environmental Pollution, 2021, 272, 115908.	7.5	107
5	New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere, 2021, 268, 128827.	8.2	146
6	Reduction of hexavalent chromium by Microbacterium paraoxydans isolated from tannery wastewater and characterization of its reduced products. Journal of Water Process Engineering, 2021, 39, 101748.	5.6	26
7	Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Frontiers in Bioengineering and Biotechnology, 2021, 9, 632059.	4.1	140
8	Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Critical Reviews in Biotechnology, 2021, 41, 317-338.	9.0	107
9	Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos. Environmental Research, 2021, 194, 110660.	7.5	95
10	Emerging Technologies for Degradation of Dichlorvos: A Review. International Journal of Environmental Research and Public Health, 2021, 18, 5789.	2.6	17
11	Exploration of the Quorum-Quenching Mechanism in Pseudomonas nitroreducens W-7 and Its Potential to Attenuate the Virulence of Dickeya zeae EC1. Frontiers in Microbiology, 2021, 12, 694161.	3.5	19
12	Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. Journal of Hazardous Materials, 2021, 418, 126253.	12.4	117
13	Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives. Applied Microbiology and Biotechnology, 2021, 105, 7695-7708.	3.6	33
14	Insights into the microbial degradation and biochemical mechanisms of carbamates. Chemosphere, 2021, 279, 130500.	8.2	76
15	Plasmid-mediated catabolism for the removal of xenobiotics from the environment. Journal of Hazardous Materials, 2021, 420, 126618.	12.4	62
16	Environmental Occurrence, Toxicity Concerns, and Degradation of Diazinon Using a Microbial System. Frontiers in Microbiology, 2021, 12, 717286.	3.5	20
17	Involvement of Synergistic Interactions Between Plant and Rhizospheric Microbes for the Removal of Toxic/Hazardous Contaminants. Rhizosphere Biology, 2021, , 223-238.	0.6	0
18	Plant-Microbe Interaction: An Ecofriendly Approach for the Remediation of Metal Contaminated Environments., 2020,, 444-450.		4

#	Article	IF	CITATIONS
19	Role of Industries in Water Scarcity and Its Adverse Effects on Environment and Human Health., 2020, , 235-256.		103
20	Characterization of a Novel Quorum-Quenching Bacterial Strain, Burkholderia anthina HN-8, and Its Biocontrol Potential against Black Rot Disease Caused by Xanthomonas campestris pv. campestris. Microorganisms, 2020, 8, 1485.	3.6	11
21	Quorum Quenching in a Novel Acinetobacter sp. XN-10 Bacterial Strain against Pectobacterium carotovorum subsp. carotovorum. Microorganisms, 2020, 8, 1100.	3.6	18
22	Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches. Toxics, 2020, 8, 65.	3.7	60
23	Whole-Genome Sequencing Analysis of Quorum Quenching Bacterial Strain Acinetobacter lactucae QL-1 Identifies the FadY Enzyme for Degradation of the Diffusible Signal Factor. International Journal of Molecular Sciences, 2020, 21, 6729.	4.1	13
24	Degradation of Acephate and Its Intermediate Methamidophos: Mechanisms and Biochemical Pathways. Frontiers in Microbiology, 2020, 11, 2045.	3.5	46
25	Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere, 2020, 259, 127419.	8.2	139
26	Current Approaches to and Future Perspectives on Methomyl Degradation in Contaminated Soil/Water Environments. Molecules, 2020, 25, 738.	3.8	46
27	Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids. Frontiers in Microbiology, 2020, 11, 868.	3.5	117
28	Conventional Methods for the Removal of Industrial Pollutants, Their Merits and Demerits. , 2019, , 1-31.		16
29	Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. , 2019, , 103-125.		208
30	Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety, 2018, 147, 102-109.	6.0	262
31	Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2016, 34, 1-32.	2.9	320