
Patricia Pizarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4676254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis strategies in the search for hierarchical zeolites. Chemical Society Reviews, 2013, 42, 4004-4035.	18.7	665
2	From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47, 8263-8306.	18.7	230
3	Effect of metal–support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts. Applied Catalysis B: Environmental, 2014, 145, 91-100.	10.8	192
4	Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catalysis Reviews - Science and Engineering, 2018, 60, 1-70.	5.7	145
5	Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: Effect of metal and support properties. Catalysis Today, 2015, 243, 163-172.	2.2	141
6	Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones. Solar Energy Materials and Solar Cells, 2014, 123, 47-57.	3.0	137
7	Hydrogen production by methane decomposition: Origin of the catalytic activity of carbon materials. Fuel, 2010, 89, 1241-1248.	3.4	134
8	Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips. Catalysis Today, 2016, 277, 171-181.	2.2	116
9	Improving the Thermochemical Energy Storage Performance of the Mn ₂ O ₃ /Mn ₃ O ₄ Redox Couple by the Incorporation of Iron. ChemSusChem, 2015, 8, 1947-1954.	3.6	114
10	Thermochemical heat storage based on the Mn ₂ O ₃ /Mn ₃ O ₄ redox couple: influence of the initial particle size on the morphological evolution and cyclability. Journal of Materials Chemistry A, 2014, 2, 19435-19443.	5.2	112
11	Evaluation of transition metal phosphides supported on ordered mesoporous materials as catalysts for phenol hydrodeoxygenation. Green Chemistry, 2016, 18, 1938-1951.	4.6	109
12	Hierarchical TS-1 zeolite as an efficient catalyst for oxidative desulphurization of hydrocarbon fractions. Applied Catalysis B: Environmental, 2014, 146, 35-42.	10.8	101
13	Engineering the acidity and accessibility of the zeolite ZSM-5 for efficient bio-oil upgrading in catalytic pyrolysis of lignocellulose. Green Chemistry, 2018, 20, 3499-3511.	4.6	101
14	Hydrocarbons production through hydrotreating of methyl esters over Ni and Co supported on SBA-15 and Al-SBA-15. Catalysis Today, 2013, 210, 81-88.	2.2	94
15	Turning TS-1 zeolite into a highly active catalyst for olefin epoxidation with organic hydroperoxides. Chemical Communications, 2009, , 1407.	2.2	84
16	Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catalysis Science and Technology, 2016, 6, 2829-2843.	2.1	82
17	Revisiting the BaO ₂ /BaO redox cycle for solar thermochemical energy storage. Physical Chemistry Chemical Physics, 2016, 18, 8039-8048.	1.3	81
18	Study on the Synthesis of High-Surface-Area Mesoporous TiO2in the Presence of Nonionic Surfactants. Industrial & Engineering Chemistry Research, 2004, 43, 2485-2492.	1.8	75

PATRICIA PIZARRO

#	Article	IF	CITATIONS
19	Influence of the Ni/P ratio and metal loading on the performance of NixPy/SBA-15 catalysts for the hydrodeoxygenation of methyl oleate. Fuel, 2015, 144, 60-70.	3.4	70
20	Advanced biofuels production by upgrading of pyrolysis bioâ€oil. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e245.	1.9	70
21	Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Conversion and Biorefinery, 2017, 7, 289-304.	2.9	67
22	CO2 adsorption on amine-functionalized clays. Microporous and Mesoporous Materials, 2019, 282, 38-47.	2.2	66
23	Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 9788-9794.	3.8	64
24	Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors. Chemical Engineering Journal, 2013, 224, 128-135.	6.6	63
25	Catalytic hydrodeoxygenation of m-cresol over Ni 2 P/hierarchical ZSM-5. Catalysis Today, 2018, 304, 72-79.	2.2	63
26	Photocatalytic degradation of imazapyr in water: Comparison of activities of different supported and unsupported TiO2-based catalysts. Catalysis Today, 2005, 101, 211-218.	2.2	61
27	Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation. Catalysis Today, 2009, 143, 151-157.	2.2	61
28	Ordered mesoporous carbons as highly active catalysts for hydrogen production by CH4 decomposition. Chemical Communications, 2008, , 6585.	2.2	59
29	Tailoring the properties of hierarchical TS-1 zeolite synthesized from silanized protozeolitic units. Applied Catalysis A: General, 2012, 435-436, 32-42.	2.2	59
30	Hierarchical TS-1 zeolite synthesized from SiO2 TiO2 xerogels imprinted with silanized protozeolitic units. Chemical Engineering Journal, 2011, 171, 1428-1438.	6.6	58
31	Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage. Journal of Physical Chemistry C, 2016, 120, 27800-27812.	1.5	57
32	Chemical insights on the activity of La1-xSrxFeO3 perovskites for chemical looping reforming of methane coupled with CO2-splitting. Journal of CO2 Utilization, 2019, 31, 16-26.	3.3	56
33	Mesostructured SiO2-doped TiO2 with enhanced thermal stability prepared by a soft-templating sol–gel route. Microporous and Mesoporous Materials, 2008, 111, 429-440.	2.2	50
34	Kinetic and autocatalytic effects during the hydrogen production by methane decomposition over carbonaceous catalysts. International Journal of Hydrogen Energy, 2013, 38, 5671-5683.	3.8	49
35	Narrowing the mesopore size distribution in hierarchical TS-1 zeolite by surfactant-assisted reorganization. Microporous and Mesoporous Materials, 2014, 189, 71-82.	2.2	49
36	Bio-oil production by lignocellulose fast-pyrolysis: Isolating and comparing the effects of indigenous versus external catalysts. Fuel Processing Technology, 2017, 167, 563-574.	3.7	48

PATRICIA PIZARRO

#	Article	IF	CITATIONS
37	Manganese oxide-based thermochemical energy storage: Modulating temperatures of redox cycles by Fe–Cu co-doping. Journal of Energy Storage, 2016, 5, 169-176.	3.9	45
38	Photocatalytic hydrogen production in the water/methanol system using Pt/RE:NaTaO3 (REÂ=ÂY, La, Ce,) Tj I	ETQq0 <u>0</u> 0 rg	BT /Overlock 1

39	Development of crystallinity and photocatalytic properties in porous TiO2 by mild acid treatment. Journal of Materials Chemistry, 2007, 17, 1178.	6.7	41
40	Guaiacol hydrodeoxygenation over Ni2P supported on 2D-zeolites. Catalysis Today, 2020, 345, 48-58.	2.2	41
41	Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science and Technology, 2013, 3, 2425.	2.1	39
42	Catalytic fast pyrolysis of biomass over Mg-Al mixed oxides derived from hydrotalcite-like precursors: Influence of Mg/Al ratio. Journal of Analytical and Applied Pyrolysis, 2018, 134, 362-370.	2.6	39
43	Ce-promoted Ni/SBA-15 catalysts for anisole hydrotreating under mild conditions. Applied Catalysis B: Environmental, 2016, 197, 206-213.	10.8	37
44	The crucial role of clay binders in the performance of ZSM-5 based materials for biomass catalytic pyrolysis. Catalysis Science and Technology, 2019, 9, 789-802.	2.1	35
45	Preparation of bimodal micro–mesoporous TiO2with tailored crystalline properties. Chemical Communications, 2004, , 1000-1001.	2.2	34
46	Synthesis of Hierarchical TS-1 Zeolite from Silanized Seeds. Topics in Catalysis, 2010, 53, 1319-1329.	1.3	34
47	ZSM-5 zeolites performance assessment in catalytic pyrolysis of PVC-containing real WEEE plastic wastes. Catalysis Today, 2022, 390-391, 210-220.	2.2	34
48	Advances in the design of ordered mesoporous materials for low-carbon catalytic hydrogen production. Journal of Materials Chemistry A, 2013, 1, 12016.	5.2	33
49	Enhanced photocatalytic hydrogen production by improving the Pt dispersion over mesostructured TiO2. International Journal of Hydrogen Energy, 2014, 39, 4812-4819.	3.8	33
50	Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw. Catalysis Today, 2018, 304, 30-38.	2.2	32
51	Cross-reactivity of guaiacol and propionic acid blends during hydrodeoxygenation over Ni-supported catalysts. Fuel, 2018, 214, 187-195.	3.4	29
52	Mixed NaNb _x Ta _{1â^'x} O ₃ perovskites as photocatalysts for H ₂ production. Green Chemistry, 2015, 17, 1735-1743.	4.6	28
53	Improvement of the hierarchical TS-1 properties by silanization of protozeolitic units in presence of alcohols. Microporous and Mesoporous Materials, 2013, 166, 59-66.	2.2	27
54	Thermochemical valorization of camelina straw waste via fast pyrolysis. Biomass Conversion and Biorefinery, 2017, 7, 277-287.	2.9	27

PATRICIA PIZARRO

#	Article	IF	CITATIONS
55	Exploring the Redox Behavior of La0.6Sr0.4Mn1â [~] 'xAlxO3 Perovskites for CO2-Splitting in Thermochemical Cycles. Topics in Catalysis, 2017, 60, 1108-1118.	1.3	26
56	Exploring the thermochemical heat storage capacity of AMn2O4 (A = Li or Cu) spinels. Solid State Ionics, 2018, 320, 316-324.	1.3	26
57	Thermochemical Heat Storage at High Temperatures using Mn2O3/Mn3O4 System: Narrowing the Redox Hysteresis by Metal Co-doping. Energy Procedia, 2015, 73, 263-271.	1.8	24
58	Synthesis of Nickel Phosphide Nanorods as Catalyst for the Hydrotreating of Methyl Oleate. Topics in Catalysis, 2012, 55, 991-998.	1.3	22
59	Assessing Cr incorporation in Mn2O3/Mn3O4 redox materials for thermochemical heat storage applications. Journal of Energy Storage, 2021, 33, 102028.	3.9	20
60	Enhanced performance of CH4 dry reforming over La0.9Sr0.1FeO3/YSZ under chemical looping conditions. Fuel, 2022, 309, 122122.	3.4	20
61	Hydrogen production through catalytic methane decomposition promoted by pure silica materials. International Journal of Hydrogen Energy, 2015, 40, 5237-5243.	3.8	19
62	Hydrogen production by methane decomposition over pure silica SBA-15 materials. Catalysis Today, 2016, 277, 152-160.	2.2	18
63	Scalingâ€Up of Bioâ€Oil Upgrading during Biomass Pyrolysis over ZrO ₂ /ZSMâ€5â€Attapulgite. ChemSusChem, 2019, 12, 2428-2438.	3.6	17
64	Hydrogen production by methane decomposition over MnOx/YSZ catalysts. International Journal of Hydrogen Energy, 2016, 41, 19382-19389.	3.8	14
65	Catalytic Copyrolysis of Lignocellulose and Polyethylene Blends over HBeta Zeolite. Industrial & Engineering Chemistry Research, 2019, 58, 6243-6254.	1.8	14
66	Design of efficient Mn-based redox materials for thermochemical heat storage at high temperatures. AIP Conference Proceedings, 2016, , .	0.3	13
67	Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels. Journal of Nanoscience and Nanotechnology, 2015, 15, 6642-6650.	0.9	12
68	Pyrolysis of microalgae for fuel production. , 2017, , 259-281.		12
69	On the Feasibility of Using Hierarchical ZSMâ€5 and Beta Zeolites as Supports of Metal Phosphides for Catalytic Hydrodeoxygenation of Phenol. Energy Technology, 2019, 7, 1900214.	1.8	12
70	Factors influencing the photocatalytic activity ofÂalkali Nb Ta perovskites for hydrogen production from aqueous methanol solutions. International Journal of Hydrogen Energy, 2016, 41, 19921-19928.	3.8	11
71	Cascade Deoxygenation Process Integrating Acid and Base Catalysts for the Efficient Production of Second-Generation Biofuels. ACS Sustainable Chemistry and Engineering, 2019, 7, 18027-18037.	3.2	11
72	Determining the Role of Feâ€Doping on Promoting the Thermochemical Energy Storage Performance of (Mn _{1â^'} <i>_x</i> Fe <i>_x</i>) ₃ O ₄ Spinels. Small Methods, 2021, 5, e2100550.	4.6	8

#	Article	IF	CITATIONS
73	Hydrogen production by catalytic methane decomposition over rice husk derived silica. Fuel, 2021, 306, 121697.	3.4	8
74	Transportation Biofuels via the Pyrolysis Pathway: Status and Prospects. , 2017, , 1-33.		3
75	Transportation Biofuels via the Pyrolysis Pathway: Status and Prospects. , 2019, , 1081-1112.		0