Yuan-Ye Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4676206/publications.pdf Version: 2024-02-01

YUAN-YE HANC

#	Article	IF	CITATIONS
1	Copper-Catalyzed Trifluoromethylation of Terminal Alkenes through Allylic C–H Bond Activation. Journal of the American Chemical Society, 2011, 133, 15300-15303.	6.6	351
2	Alternative Mechanistic Explanation for Ligand-Dependent Selectivities in Copper-Catalyzed <i>N</i> and <i>O</i> -Arylation Reactions. Journal of the American Chemical Society, 2010, 132, 18078-18091.	6.6	196
3	Pd-Catalyzed Decarboxylative Cross Coupling of Potassium Polyfluorobenzoates with Aryl Bromides, Chlorides, and Triflates. Organic Letters, 2010, 12, 1000-1003.	2.4	150
4	Mechanism of Vanadium-Catalyzed Selective C–O and C–C Cleavage of Lignin Model Compound. ACS Catalysis, 2016, 6, 4399-4410.	5.5	90
5	Visible-light-induced regioselective cross-dehydrogenative coupling of 2-isothiocyanatonaphthalenes with amines using molecular oxygen. Science China Chemistry, 2020, 63, 1652-1658.	4.2	72
6	Theoretical Study on the Mechanism of Ni atalyzed Alkyl–Alkyl Suzuki Crossâ€Coupling. Chemistry - A European Journal, 2012, 18, 4345-4357.	1.7	66
7	Mechanism of the Pdâ€catalyzed Decarboxylative Allylation of αâ€lmino Esters: Decarboxylation via Free Carboxylate Ion. Chemistry - A European Journal, 2012, 18, 14527-14538.	1.7	62
8	Mechanistic Origin of Regioselectivity in Nickel-Catalyzed Olefin Hydroheteroarylation through C–H Activation. Organometallics, 2012, 31, 4356-4366.	1.1	56
9	Mechanism of Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes with a Nitrite Co-Catalyst. ACS Catalysis, 2015, 5, 1414-1423.	5.5	51
10	Mechanistic Study of Borylation of Nitriles Catalyzed by Rh–B and Ir–B Complexes via C–CN Bond Activation. Organometallics, 2013, 32, 926-936.	1.1	48
11	Advances in theoretical study on transition-metal-catalyzed Câ^'H activation. Science China Chemistry, 2016, 59, 1448-1466.	4.2	47
12	Mechanism and Origin of Et ₂ Al(OEt)-Induced Chemoselectivity of Nickel-Catalyzed Three-Component Coupling of One Diketene and Two Alkynes. ACS Catalysis, 2017, 7, 1886-1896.	5.5	38
13	Visible-light-promoted oxidative desulphurisation: a strategy for the preparation of unsymmetrical ureas from isothiocyanates and amines using molecular oxygen. Green Chemistry, 2020, 22, 2956-2962.	4.6	37
14	Mechanism of Ligandâ€Controlled Regioselectivityâ€Switchable Copperâ€Catalyzed Alkylboration of Alkenes. Chemistry - A European Journal, 2016, 22, 14611-14617.	1.7	36
15	Mechanism of Nickel(II) atalyzed Oxidative C(sp ²)â^'H/C(sp ³)â^'H Coupling of Benzamides and Toluene Derivatives. Chemistry - an Asian Journal, 2015, 10, 2479-2483.	1.7	31
16	Theoretical Study of Gold-Catalyzed Cyclization of 2-Alkynyl- <i>N</i> -propargylanilines and Rationalization of Kinetic Experimental Phenomena. Journal of Organic Chemistry, 2016, 81, 9381-9388.	1.7	30
17	Mechanism of Cu-Catalyzed Aerobic C(CO)–CH ₃ Bond Cleavage: A Combined Computational and Experimental Study. ACS Catalysis, 2019, 9, 1066-1080.	5.5	28
18	Mechanism of Pd-catalyzed acylation/alkenylation of aryl iodide: a DFT study. Organic and Biomolecular Chemistry, 2017, 15, 6147-6156.	1.5	27

YUAN-YE JIANG

#	Article	IF	CITATIONS
19	Mechanistic Insights into the Chemo- and Regio-Selective B(C6F5)3 Catalyzed C–H Functionalization of Phenols with Diazoesters. Journal of Organic Chemistry, 2019, 84, 14508-14519.	1.7	27
20	One-Pot Methylenation–Cyclization Employing Two Molecules of CO2 with Arylamines and Enaminones. Journal of Organic Chemistry, 2020, 85, 912-923.	1.7	27
21	Ligand-Free Iron-Catalyzed Regioselectivity-Controlled Hydroboration of Aliphatic Terminal Alkenes. ACS Catalysis, 2020, 10, 11963-11970.	5.5	26
22	C–H Acidity and Arene Nucleophilicity as Orthogonal Control of Chemoselectivity in Dual C–H Bond Activation. Organic Letters, 2019, 21, 2360-2364.	2.4	24
23	Mechanistic Insights into the Ruthenium-Catalyzed [4 + 1] Annulation of Benzamides and Propargyl Alcohols by DFT Studies. Organometallics, 2019, 38, 1877-1886.	1.1	23
24	Mechanism and Rate-Determining Factors of Amide Bond Formation through Acyl Transfer of Mixed Carboxylic–Carbamic Anhydrides: A Computational Study. Journal of Organic Chemistry, 2018, 83, 2676-2685.	1.7	20
25	Mechanism of Palladium-Catalyzed Alkylation of Aryl Halides with Alkyl Halides through C–H Activation: A Computational Study. Organometallics, 2018, 37, 2222-2231.	1.1	19
26	Mechanism of Vanadium-Catalyzed Deoxydehydration of Vicinal Diols: Spin-Crossover-Involved Processes. Organometallics, 2016, 35, 3388-3396.	1.1	18
27	Mechanism of Amide Bond Formation from Carboxylic Acids and Amines Promoted by 9-Silafluorenyl Dichloride Derivatives. Journal of Organic Chemistry, 2017, 82, 9087-9096.	1.7	18
28	Mechanism and Origin of Ligand-Controlled Chemo- and Regioselectivities in Palladium-Catalyzed Methoxycarbonylation of Alkynes. Journal of Organic Chemistry, 2020, 85, 7136-7151.	1.7	18
29	Palladium-catalyzed directing group-assisted C8-triflation of naphthalenes. Chemical Communications, 2016, 52, 6709-6711.	2.2	17
30	C–H Activation versus Ring Opening and Inner- versus Outer-Sphere Concerted Metalation–Deprotonation in Rh(III)-Catalyzed Oxidative Coupling of Oxime Ether and Cyclopropanol: A Density Functional Theory Study. Journal of Organic Chemistry, 2019, 84, 11150-11160.	1.7	17
31	Mechanism and Origin of Chemoselectivity of Ru-Catalyzed Cross-Coupling of Secondary Alcohols to β-Disubstituted Ketones. Journal of Organic Chemistry, 2020, 85, 12444-12455.	1.7	17
32	Rh(I)-catalyzed borylation of primary alkyl chlorides. Chinese Chemical Letters, 2014, 25, 397-400.	4.8	15
33	Mechanism for the enhanced reactivity of 4-mercaptoprolyl thioesters in native chemical ligation. RSC Advances, 2016, 6, 68312-68321.	1.7	15
34	Mechanistic Study on Platinum-Catalyzed Domino Reaction of Benziodoxole and Pyrrole Homopropargylic Ethers for Indole Synthesis. Organometallics, 2017, 36, 2843-2852.	1.1	15
35	Unveiling the mechanisms and secrets of chemoselectivities in Au(<scp>i</scp>)-catalyzed diazo-based couplings with aryl unsaturated aliphatic alcohols. Catalysis Science and Technology, 2018, 8, 4450-4462.	2.1	15
36	Mechanism and Origin of Chemical Selectivity in Oxaziridine-Based Methionine Modification: A Computational Study. Journal of Organic Chemistry, 2017, 82, 9765-9772.	1.7	14

Yuan-Ye Jiang

#	Article	IF	CITATIONS
37	Catalyst-free synthesis of α-thioacrylic acids <i>via</i> cascade thiolation and 1,4-aryl migration of aryl alkynoates at room temperature. Organic and Biomolecular Chemistry, 2018, 16, 8379-8383.	1.5	14
38	A Ligand-Dissociation-Involved Mechanism in Amide Formation of Monofluoroacylboronates with Hydroxylamines. Journal of Organic Chemistry, 2017, 82, 1064-1072.	1.7	13
39	Theoretical Study on Homogeneous Hydrogen Activation Catalyzed by Cationic Ag(I) Complex. Organometallics, 2014, 33, 6577-6584.	1.1	12
40	A self-catalytic role of methanol in PNP-Ru pincer complex catalysed dehydrogenation. Science China Chemistry, 2016, 59, 724-729.	4.2	12
41	Palladium-Catalyzed Regioselective B(3,4)–H Acyloxylation of <i>o</i> -Carboranes. Inorganic Chemistry, 2022, 61, 911-922.	1.9	12
42	Rapid formation of Csp3–Csp3 bonds through copper-catalyzed decarboxylative Csp3–H functionalization. Chinese Chemical Letters, 2023, 34, 107477.	4.8	12
43	Boron Ester atalyzed Amidation of Carboxylic Acids with Amines: Mechanistic Rationale by Computational Study. Chemistry - an Asian Journal, 2018, 13, 2685-2690.	1.7	10
44	Computational study of the mechanism of amide bond formation <i>via</i> CS ₂ -releasing 1,3-acyl transfer. Organic and Biomolecular Chemistry, 2018, 16, 5808-5815.	1.5	10
45	The mechanism and structure–activity relationship of amide bond formation by silane derivatives: a computational study. Organic and Biomolecular Chemistry, 2019, 17, 9232-9242.	1.5	10
46	Mechanism and Origin of Stereoselectivity of Pd-Catalyzed Cascade Annulation of Aryl Halide, Alkene, and Carbon Monoxide via C–H Activation. Journal of Organic Chemistry, 2019, 84, 4353-4362.	1.7	8
47	Mechanism of trifluoroacetic-acid-promoted N-to-S acyl transfer of enamides. Tetrahedron, 2017, 73, 4380-4386.	1.0	7
48	Theoretical study of the Cl-initiated atmospheric oxidation of methyl isopropenyl ketone. RSC Advances, 2017, 7, 52801-52811.	1.7	6
49	Cascade C–N bond cleavage of amides/intramolecular amination reactions: an atom economical way to α-cabolin-4-ones. Organic Chemistry Frontiers, 2021, 8, 579-583.	2.3	5
50	Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes. Chinese Chemical Letters, 2015, 26, 58-62.	4.8	4
51	Arylboronate Ester Protected Amino Acids as Orthogonal Building Blocks for Fmoc Solidâ€Phase Peptide Synthesis. European Journal of Organic Chemistry, 2017, 2017, 5916-5920.	1.2	4
52	Theoretical study on the intramolecular oxyamination involved in Rh(III)-catalyzed cyclization of unsaturated alkoxyamines. Journal of Organometallic Chemistry, 2019, 880, 253-260.	0.8	4
53	Mechanism of Rh(III)-catalyzed alkylation of N-pyrimidylindoline with cyclopropanols: A DFT study. Molecular Catalysis, 2020, 498, 111255.	1.0	4
54	Density Functional Theory Study on the Mechanism of Iridium-Catalyzed Benzylamine <i>ortho</i> C–H Alkenylation with Ethyl Acrylate. ACS Omega, 2020, 5, 15446-15453.	1.6	4

YUAN-YE JIANG

#	Article	IF	CITATIONS
55	Double-Regiodetermining-Stages Mechanistic Model Explaining the Regioselectivity of Pd-Catalyzed Hydroaminocarbonylation of Alkenes with Carbon Monoxide and Ammonium Chloride. Journal of Organic Chemistry, 2021, 86, 12988-13000.	1.7	4
56	Noncovalent Interaction- and Steric Effect-Controlled Regiodivergent Selectivity in Dimeric Manganese-Catalyzed Hydroarylation of Internal Alkynes: A Computational Study. Journal of Organic Chemistry, 2022, 87, 4215-4225.	1.7	4
57	A computational study on H ₂ S release and amide formation from thionoesters and cysteine. Organic and Biomolecular Chemistry, 2019, 17, 5771-5778.	1.5	3
58	Decarbonylative Issues Involved in Ru(II)â€Catalyzed [6+2â^'1] Annulation Reaction of Hydroxychromone with Alkyne: A DFT Study. European Journal of Organic Chemistry, 2021, 2021, 266-273.	1.2	3
59	A DFT mechanistic study on gold(I)-catalyzed cascade reaction of aminaloalkyne involving Petasis-Ferrier cyclization. Journal of Organometallic Chemistry, 2018, 864, 136-142.	0.8	2
60	Theoretical study on abnormal trans-effect of chloride, bromide and iodide ligands in iridium complexes. Computational and Theoretical Chemistry, 2018, 1138, 1-6.	1.1	2
61	Regioselective Synthesis of Tetrasubstituted Benzenes via Co-Catalyzed Cycloaddition of Alkynyl Ketones and 2-Acetylpyridines. Journal of Organic Chemistry, 2021, 86, 12158-12167.	1.7	2
62	Mechanism and selectivity on IrIII/RhIII-catalyzed coupling of terminal alkenes and dioxazolones: A DFT study. Molecular Catalysis, 2021, 510, 111679.	1.0	1
63	Mechanism and stereospecificity of Z-enamide synthesis from salicylaldehydes with isoxazoles using DFT calculations. Journal of Organometallic Chemistry, 2019, 903, 120981.	0.8	0