Gui-lin Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4676122/publications.pdf

Version: 2024-02-01

194 papers 7,925 citations

46984 47 h-index 79 g-index

202 all docs 202 docs citations

times ranked

202

9563 citing authors

#	Article	IF	Citations
1	Trace water triggers high-efficiency photocatalytic hydrogen peroxide production. Journal of Energy Chemistry, 2022, 64, 47-54.	7.1	33
2	Facile one-pot synthesis of a novel all-carbon stair containing dimerized pentalene core from alkyne. Chinese Chemical Letters, 2022, 33, 2047-2051.	4.8	3
3	Tuning the (Chir)Optical Properties and Squeezing out the Inherent Chirality in Polyphenylene‣ocked Helical Carbon Nanorings. Chemistry - A European Journal, 2022, 28, .	1.7	18
4	The synergetic effect of an aqua ligand and metal site on the performance of single-atom catalysts in H2O2 synthesis: a density functional theory study. Physical Chemistry Chemical Physics, 2022, 24, 3905-3917.	1.3	1
5	Synergistic Effect of Coordination Fields and Hydrosolvents on the Single-Atom Catalytic Property in H ₂ O ₂ Synthesis: A Density Functional Theory Study. Journal of Physical Chemistry C, 2022, 126, 2349-2364.	1.5	9
6	High electrocatalytical performance of FeCoNiCuPd high-entropy alloy for nitrogen reduction reaction. Molecular Catalysis, 2022, 519, 112141.	1.0	13
7	Enhancing mechanism of electron-deficient p states on photocatalytic activity of g-C ₃ N ₄ for CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 9565-9574.	5.2	13
8	Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces. Nature Communications, 2022, 13, 1239.	5.8	20
9	Facile Synthesis of a Conjugated Macrocyclic Nanoring with Graphenic Hexabenzocoronene Sidewall as the Segment of [12,12] Carbon Nanotubes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	9
10	Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines. Nature Communications, 2022, 13, 1802.	5.8	19
11	Cooperatively interface role of surface atoms and aqueous media on single atom catalytic property for H2O2 synthesis. Journal of Colloid and Interface Science, 2022, 617, 752-763.	5.0	10
12	Fabrication of Pd/In ₂ O ₃ Nanocatalysts Derived from MIL-68(In) Loaded with Molecular Metalloporphyrin (TCPP(Pd)) Toward CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2022, 12, 709-723.	5.5	27
13	Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis. Chinese Journal of Catalysis, 2022, 43, 1860-1869.	6.9	9
14	Family of Nanoclusters, Ln ₃₃ (Ln = Sm/Eu) and Gd ₃₂ , Exhibiting Magnetocaloric Effects and Fluorescence Sensing for MnO ₄ ^{â\in"} . Inorganic Chemistry, 2022, 61, 8861-8869.	1.9	11
15	An unexpected dual-emissive luminogen with tunable aggregation-induced emission and enhanced chiroptical property. Nature Communications, 2022, 13, .	5.8	45
16	Effect of Orbital-Symmetry Matching in a Metal–Organic Framework for Highly Efficient C ₂ H ₄ and C ₂ H ₂ Co _{Co_{Co}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	1.9	3
17	Integration of bio-inspired lanthanide-transition metal cluster and P-doped carbon nitride for efficient photocatalytic overall water splitting. National Science Review, 2021, 8, nwaa234.	4.6	18
18	Effects of surface functionalization of mxene-based nanocatalysts on hydrogen evolution reaction performance. Catalysis Today, 2021, 368, 187-195.	2.2	51

#	Article	IF	Citations
19	Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles. Chemical Engineering Journal, 2021, 408, 127358.	6.6	28
20	Dual effect of the coordination field and sulphuric acid on the properties of a single-atom catalyst in the electrosynthesis of H ₂ O ₂ . Physical Chemistry Chemical Physics, 2021, 23, 21338-21349.	1.3	15
21	Synthesis and properties of a nanographene-embedded conjugated macrocyclic nanoring <i>via</i> the Scholl reaction. Chemical Communications, 2021, 57, 9104-9107.	2.2	16
22	Thermally induced transformation of a Cu ₄ 1 ₄ -based cluster to a Cu ₂ 1 ₂ -based cluster under mild conditions. Dalton Transactions, 2021, 50, 9016-9020.	1.6	4
23	Collaboratively boosting charge transfer and CO ₂ chemisorption of SnO ₂ to selectively reduce CO ₂ to HCOOH. Chemical Communications, 2021, 57, 8636-8639.	2.2	9
24	A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2. Chinese Journal of Chemical Engineering, 2021, 31, 126-134.	1.7	10
25	Role of the Auxiliary Ligand in the Spontaneous Resolution of Enantiomers in Three-Dimensional Coordination Polymers. Inorganic Chemistry, 2021, 60, 6981-6985.	1.9	6
26	Synthesis and Photophysical Properties of [3]Cyclo-1,8-pyrenes via [4 + 2] Cycloaddition Reaction. Journal of Organic Chemistry, 2021, 86, 7038-7045.	1.7	6
27	Regulating the Electronic Structure and Active Sites in Ni Nanoparticles by Coating N-Doped C Layer and Porous Structure for an Efficient Overall Water Splitting. Inorganic Chemistry, 2021, 60, 6764-6771.	1.9	13
28	H-Bond-Mediated Selectivity Control of Formate versus CO during CO ₂ Photoreduction with Two Cooperative Cu/X Sites. Journal of the American Chemical Society, 2021, 143, 6114-6122.	6.6	105
29	A Highly Strained Allâ€Phenylene Conjoined Bismacrocycle. Angewandte Chemie, 2021, 133, 17508-17512.	1.6	11
30	Oxygen Groups Enhancing the Mechanism of Nitrogen Reduction Reaction Properties on Ru- or Fe-Supported Nb ₂ C MXene. Journal of Physical Chemistry C, 2021, 125, 14636-14645.	1.5	24
31	A Highly Strained Allâ€Phenylene Conjoined Bismacrocycle. Angewandte Chemie - International Edition, 2021, 60, 17368-17372.	7.2	42
32	Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N-heteroarenes. Chinese Journal of Catalysis, 2021, 42, 1185-1194.	6.9	14
33	Enantioselective Recognition and Separation of <i>C</i> ₂ Symmetric Substances via Chiral Metalâ€"Organic Frameworks. ACS Applied Materials & Enamp; Interfaces, 2021, 13, 37412-37421.	4.0	21
34	High-performance single-atom Ni catalyst loaded graphyne for H2O2 green synthesis in aqueous media. Journal of Colloid and Interface Science, 2021, 599, 58-67.	5.0	12
35	Meso-scale simulation on mechanism of Na+-gated water-conducting nanochannels in zeolite NaA. Journal of Membrane Science, 2021, 635, 119462.	4.1	5
36	A new family of decanuclear Ln ₇ Cr ₃ clusters exhibiting a magnetocaloric effect. RSC Advances, 2021, 11, 17346-17351.	1.7	3

#	Article	IF	Citations
37	A Conjugated Molecular Crown Containing a Single Pyrenyl Unit: Synthesis, Characterization, and Photophysical Properties. Chinese Journal of Organic Chemistry, 2021, 41, 2401.	0.6	2
38	Building highly active hybrid double–atom sites in C2N for enhanced electrocatalytic hydrogen peroxide synthesis. Green Energy and Environment, 2021, 6, 846-857.	4.7	22
39	Supporting a Cu@In ₂ O ₃ coreâ€"shell structure on N-doped graphitic carbon cuboctahedral cages for efficient photocatalytic homo-coupling of terminal alkynes. Journal of Materials Chemistry A, 2021, 9, 24909-24914.	5.2	10
40	Synthesis and Physical Properties of a Phenanthrene-Based [6,6] Hollow Bilayer Cylindrical Nanoring. Organic Letters, 2021, 23, 7976-7980.	2.4	0
41	Spatially Separated Photoinduced Charge Carriers for the Enhanced Photocatalysis Over the One-Dimensional Yolk–Shell In ₂ Se ₃ @N-C Nanoreactor. ACS Catalysis, 2021, 11, 12931-12939.	5.5	28
42	Mo2TiC2 MXene: A Promising Catalyst for Electrocatalytic Ammonia Synthesis. Catalysis Today, 2020, 339, 120-126.	2.2	102
43	Selective Synthesis of Conjugated Chiral Macrocycles: Sidewall Segments of (â^')/(+)â€(12,4) Carbon Nanotubes with Strong Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2020, 59, 1619-1626.	7.2	85
44	Selective Synthesis of Conjugated Chiral Macrocycles: Sidewall Segments of (â^')/(+)â€(12,4) Carbon Nanotubes with Strong Circularly Polarized Luminescence. Angewandte Chemie, 2020, 132, 1636-1643.	1.6	38
45	A highly robust heterometallic Tb ^{ll} /Ni ^{ll} –organic framework for C ₂ hydrocarbon separation and capture. Chemical Communications, 2020, 56, 2047-2050.	2.2	52
46	Hydrogen peroxide synthesis on porous graphitic carbon nitride using water as a hydrogen source. Journal of Materials Chemistry A, 2020, 8, 124-137.	5.2	18
47	Combining N,S-Codoped C and CeO ₂ : A Unique Hinge-like Structure for Efficient Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2020, 59, 937-942.	1.9	33
48	Hydrogen peroxide electrochemical synthesis on hybrid double-atom (Pd–Cu) doped N vacancy g-C ₃ N ₄ : a novel design strategy for electrocatalyst screening. Journal of Materials Chemistry A, 2020, 8, 2672-2683.	5.2	40
49	Synthesis of Giant Ï€â€Extended Molecular Macrocyclic Rings as Finite Models of Carbon Nanotubes Displaying Enriched Sizeâ€Dependent Physical Properties. Chemistry - A European Journal, 2020, 26, 2159-2163.	1.7	23
50	A generalized formula for two-dimensional diffusion of CO in graphene nanoslits with different Pt loadings. Green Energy and Environment, 2020, 5, 322-332.	4.7	10
51	Defect CTF derived Ru-based catalysts for high performance overall water splitting reaction. Journal of Energy Chemistry, 2020, 50, 135-142.	7.1	13
52	Prolonging the lifetimes of plasmonic hot electrons for efficient hydrogen evolution by Ag@N,O-C interfaces with a unique ginkgo-leaf hierarchical structure. Journal of Materials Chemistry A, 2020, 8, 17449-17453.	5.2	8
53	Syntheses, structures and magnetic properties of novel tetrameric Ln ₂ Mn ₂ and ring-like Ln ₄ Mn ₄ clusters. New Journal of Chemistry, 2020, 44, 9837-9843.	1.4	2
54	High-Throughput Screening of Hydrogen Evolution Reaction Catalysts in MXene Materials. Journal of Physical Chemistry C, 2020, 124, 13695-13705.	1.5	51

#	Article	IF	CITATIONS
55	The Mechanism of the Magnetodielectric Response in a Moleculeâ€Based Trinuclear Iron Cluster Material. Angewandte Chemie - International Edition, 2020, 59, 14409-14413.	7.2	21
56	The Mechanism of the Magnetodielectric Response in a Moleculeâ€Based Trinuclear Iron Cluster Material. Angewandte Chemie, 2020, 132, 14515-14519.	1.6	6
57	Bovine serum albumin templated porous CeO2 to support Au catalyst for benzene oxidation. Molecular Catalysis, 2020, 486, 110849.	1.0	13
58	Simultaneous electrochemical ozone production and hydrogen evolution by using tantalum-based nanorods electrocatalysts. Applied Catalysis B: Environmental, 2020, 266, 118632.	10.8	42
59	Anion-Dependent Assembly of 3d–4f Heterometallic Clusters Ln ₅ Cr ₂ and Ln ₈ Cr ₄ . Inorganic Chemistry, 2020, 59, 1959-1966.	1.9	21
60	Magnetocaloric Effect and Slow Magnetic Relaxation on Two-Dimensional Layered 3d-4f Cluster-Based Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 4005-4012.	1.4	20
61	Carbonate–Water Supramolecule Trapped in Silver Nanoclusters Encapsulating Unprecedented Ag ₁₁ Kernel. CCS Chemistry, 2020, 2, 663-672.	4.6	5
62	Biomass Valorization via Paired Electrosynthesis Over Vanadium Nitrideâ€Based Electrocatalysts. Advanced Functional Materials, 2019, 29, 1904780.	7.8	120
63	Precise synthesis and photophysical properties of a small chiral carbon nanotube segment: cyclo[7]paraphenylene-2,6-naphthylene. Chemical Communications, 2019, 55, 9456-9459.	2.2	28
64	Optimizing Alkyne Hydrogenation Performance of Pd on Carbon in Situ Decorated with Oxygen-Deficient TiO ₂ by Integrating the Reaction and Diffusion. ACS Catalysis, 2019, 9, 10656-10667.	5.5	50
65	Fe(CN) ₅ @PIL-derived N-doped porous carbon with FeC _x N _y active sites as a robust electrocatalyst for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 97-105.	2.1	10
66	Defect engineering of nickel hydroxide nanosheets by Ostwald ripening for enhanced selective electrocatalytic alcohol oxidation. Green Chemistry, 2019, 21, 578-588.	4.6	71
67	Unusual fcc-structured Ag ₁₀ kernels trapped in Ag ₇₀ nanoclusters. Chemical Science, 2019, 10, 564-568.	3.7	60
68	Micromechanical simulation of the pore size effect on the structural stability of brittle porous materials with bicontinuous morphology. Physical Chemistry Chemical Physics, 2019, 21, 12895-12904.	1.3	10
69	Encapsulating a Ni(II) molecular catalyst in photoactive metal–organic framework for highly efficient photoreduction of CO2. Science Bulletin, 2019, 64, 976-985.	4.3	48
70	Multifunctionalized octamethoxy-[8]cycloparaphenylene: facile synthesis and analysis of novel photophysical and photoinduced electron transfer properties. Organic Chemistry Frontiers, 2019, 6, 1885-1890.	2.3	18
71	Unconventional Method for Fabricating Valence Tautomeric Materials: Integrating Redox Center within a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 6822-6826.	6.6	39
72	Multiscale Simulation of Morphology Evolution of Supported Pt Nanoparticles via Interfacial Control. Langmuir, 2019, 35, 6393-6402.	1.6	8

#	Article	IF	CITATIONS
73	Single and double boron atoms doped nanoporous C ₂ N– <i>h</i> 2D electrocatalysts for highly efficient N ₂ reduction reaction: a density functional theory study. Nanotechnology, 2019, 30, 335403.	1.3	81
74	2D-3D transformation of palladium and gold nanoparticles on functionalized Mo2C by multiscale simulation. Applied Surface Science, 2019, 481, 554-563.	3.1	10
75	Photoconductive Curvedâ€Nanographene/Fullerene Supramolecular Heterojunctions. Angewandte Chemie - International Edition, 2019, 58, 6244-6249.	7.2	99
76	Multiscale simulation on thermal stability of supported metal nanocatalysts. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1405.	6.2	3
77	Carboxylic acid stimulated silver shell isomerism in a triple core–shell Ag ₈₄ nanocluster. Chemical Science, 2019, 10, 4862-4867.	3.7	63
78	Photoconductive Curvedâ€Nanographene/Fullerene Supramolecular Heterojunctions. Angewandte Chemie, 2019, 131, 6310-6315.	1.6	30
79	Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2. Journal of Energy Chemistry, 2019, 39, 144-151.	7.1	79
80	A Long π-Conjugated Poly(<i>para</i> -Phenylene)-Based Polymeric Segment of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2019, 141, 18938-18943.	6.6	41
81	Through-space π-delocalization in a conjugated macrocycle consisting of [2.2]paracyclophane. Chemical Communications, 2019, 55, 14617-14620.	2.2	14
82	Multiscale Simulation on Product Distribution from Pyrolysis of Styrene-Butadiene Rubber. Polymers, 2019, 11, 1967.	2.0	13
83	Temperature dependence of spherical electron transfer in a nanosized [Fe14] complex. Nature Communications, 2019, 10, 5510.	5.8	12
84	Enhanced Oxygen Reduction Activity on Carbon Supported Pd Nanoparticles Via SiO ₂ . ChemCatChem, 2019, 11, 1278-1285.	1.8	9
85	Electrocatalytic Upgrading of Ligninâ€Derived Bioâ€Oil Based on Surfaceâ€Engineered PtNiB Nanostructure. Advanced Functional Materials, 2019, 29, 1807651.	7.8	70
86	A theoretical study of electrocatalytic ammonia synthesis on single metal atom/MXene. Chinese Journal of Catalysis, 2019, 40, 152-159.	6.9	76
87	Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chemical Engineering Journal, 2019, 362, 41-52.	6.6	95
88	Palladium Dimer Supported on Mo ₂ CO ₂ (MXene) for Direct Methane to Methanol Conversion. Advanced Theory and Simulations, 2019, 2, 1800158.	1.3	22
89	Functionalization Ti3C2 MXene by the adsorption or substitution of single metal atom. Applied Surface Science, 2019, 465, 911-918.	3.1	63
90	Series of Highly Stable Lanthanide-Organic Frameworks Constructed by a Bifunctional Linker: Synthesis, Crystal Structures, and Magnetic and Luminescence Properties. Inorganic Chemistry, 2018, 57, 2577-2583.	1.9	33

#	Article	IF	Citations
91	A strain-controlled C2N monolayer membrane for gas separation in PEMFC application. Applied Surface Science, 2018, 441, 408-414.	3.1	33
92	A novel symmetrically multifunctionalized dodecamethoxy-cycloparaphenylene: synthesis, photophysical, and supramolecular properties. Organic Chemistry Frontiers, 2018, 5, 1446-1451.	2.3	26
93	Highly Efficient Ammonia Synthesis Electrocatalyst: Single Ru Atom on Naturally Nanoporous Carbon Materials. Advanced Theory and Simulations, 2018, 1, 1800018.	1.3	90
94	Multifunctional luminescent magnetic cryocooler in a Gd ₅ Mn ₂ pyramidal complex. Chemical Communications, 2018, 54, 4104-4107.	2.2	34
95	Oxygen vacancies on TiO ₂ promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2264-2272.	5.2	163
96	Trace phosphorusandoping significantly improving S-content of binaryandoped mesoporous carbon network with enhancing electrochemical performance. Microporous and Mesoporous Materials, 2018, 256, 75-83.	2.2	14
97	A hexadecanuclear silver alkynyl cluster based NbO framework with triple emissions from the visible to near-infrared II region. Chemical Communications, 2018, 54, 11905-11908.	2.2	35
98	Sophisticated Construction of Electronically Labile Materials: A Neutral, Radical-Rich, Cobalt Valence Tautomeric Triangle. Journal of the American Chemical Society, 2018, 140, 14581-14585.	6.6	21
99	Two Self-Interpenetrating Copper(II)-Paddlewheel Metal–Organic Frameworks Constructed from Bifunctional Triazolate–Carboxylate Linkers. Crystal Growth and Design, 2018, 18, 6204-6210.	1.4	8
100	A Threeâ€Dimensional Capsuleâ€like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon Nanotubes: Synthesis, Characterization, and Complexation with C ₇₀ . Angewandte Chemie - International Edition, 2018, 57, 9330-9335.	7.2	75
101	Three Cd(<scp>ii</scp>) coordination polymers constructed from a series of multidentate ligands derived from cyclotriphosphazene: synthesis, structures and luminescence properties. CrystEngComm, 2018, 20, 3535-3542.	1.3	8
102	Nanosized Chiral [Mn ₆ Ln ₂] Clusters Modeled by Enantiomeric Schiff Base Derivatives: Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 8639-8645.	1.9	25
103	Hierarchical tandem assembly of planar $[3\tilde{A}-3]$ building units into $\{3\tilde{A}-[3\tilde{A}-3]\}$ oligomers: mixed-valency, electrical conductivity and magnetism. Chemical Science, 2018, 9, 7498-7504.	3.7	23
104	Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nature Communications, 2018, 9, 3353.	5.8	195
105	A Threeâ€Dimensional Capsuleâ€like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon Nanotubes: Synthesis, Characterization, and Complexation with C ₇₀ . Angewandte Chemie, 2018, 130, 9474-9479.	1.6	38
106	Synthesis, characterization, and properties of four lanthanide-based coordination polymers with mixed ligands of 4-($(4\hat{a} \in ^2$ -carboxybenzyl)oxy)benzoic acid and oxalic acid. Journal of Coordination Chemistry, 2017, 70, 2029-2039.	0.8	2
107	A Large Ï€â€Extended Carbon Nanoring Based on Nanographene Units: Bottomâ€Up Synthesis, Photophysical Properties, and Selective Complexation with Fullerene C ₇₀ . Angewandte Chemie - International Edition, 2017, 56, 158-162.	7.2	95
108	Atomically dispersed Pd catalysts in graphyne nanopore: formation and reactivity. Nanotechnology, 2017, 28, 295403.	1.3	26

#	Article	IF	Citations
109	A superior fluorescent sensor for Al ³⁺ and UO ₂ ²⁺ based on a Co(<scp>ii</scp>) metal–organic framework with exposed pyrimidyl Lewis base sites. Journal of Materials Chemistry A, 2017, 5, 13079-13085.	5.2	287
110	Embedding 1D or 2D cobalt–carboxylate substrates in 3D coordination polymers exhibiting slow magnetic relaxation behaviors: crystal structures, high-field EPR, and magnetic studies. Dalton Transactions, 2017, 46, 4786-4795.	1.6	10
111	A Large Ï€â€Extended Carbon Nanoring Based on Nanographene Units: Bottomâ€Up Synthesis, Photophysical Properties, and Selective Complexation with Fullerene C 70. Angewandte Chemie, 2017, 129, 164-168.	1.6	52
112	The Effect of N ontaining Supports on Catalytic CO Oxidation Activity over Highly Dispersed Pt/UiOâ€67. European Journal of Inorganic Chemistry, 2017, 2017, 172-178.	1.0	18
113	PtPd alloy embedded in nitrogen-rich graphene nanopores: High-performance bifunctional electrocatalysts for hydrogen evolution and oxygen reduction. Carbon, 2017, 114, 740-748.	5.4	94
114	Double Nanoporous Structure with Nanoporous PtFe Embedded in Graphene Nanopores: Highly Efficient Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Reduction. Advanced Materials Interfaces, 2017, 4, 1601029.	1.9	36
115	Enhanced Selectivity of Phenol Hydrogenation in Low-Pressure CO ₂ over Supported Pd Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 11628-11636.	3.2	30
116	Hierarchical Porous NC@CuCo Nitride Nanosheet Networks: Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting and Selective Electrooxidation of Benzyl Alcohol. Advanced Functional Materials, 2017, 27, 1704169.	7.8	267
117	Enhanced Catalytic Performances for Guaiacol Aqueous Phase Hydrogenation over Ruthenium Supported on Mesoporous TiO ₂ Hollow Spheres Embedded with SiO ₂ Nanoparticles. ChemistrySelect, 2017, 2, 9599-9606.	0.7	16
118	ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chemical Engineering Journal, 2017, 330, 1255-1264.	6.6	110
119	Tuning the confinement space of N-carbon shell-coated ruthenium nanoparticles: highly efficient electrocatalysts for hydrogen evolution reaction. Catalysis Science and Technology, 2017, 7, 4964-4970.	2.1	36
120	Improved Oxygen Reduction Reaction Performance of Co Confined in Ordered N-Doped Porous Carbon Derived from ZIF-67@PILs. Industrial & Engineering Chemistry Research, 2017, 56, 11100-11110.	1.8	50
121	Magnetic Interaction Affecting the Zero-Field Single-Molecule Magnet Behaviors in Isomorphic {Ni ^{II} ₂ Dy ^{III} _{} and {Co^{II}₂Dy^{III}₂} Tetranuclear Complexes. Inorganic Chemistry, 2017, 56, 11387-11397.}	1.9	22
122	Insights into Magnetic Interactions in a Monodisperse Gd ₁₂ Fe ₁₄ Metal Cluster. Angewandte Chemie - International Edition, 2017, 56, 11475-11479.	7.2	48
123	Insights into Magnetic Interactions in a Monodisperse Gd ₁₂ Fe ₁₄ Metal Cluster. Angewandte Chemie, 2017, 129, 11633-11637.	1.6	5
124	A series of transition metal coordination polymers based on a rigid bi-functional carboxylate–triazolate tecton. CrystEngComm, 2017, 19, 4586-4594.	1.3	12
125	A Gigantic Molecular Wheel of {Gd ₁₄₀ }: A New Member of the Molecular Wheel Family. Journal of the American Chemical Society, 2017, 139, 18178-18181.	6.6	229
126	Selective phenol hydrogenation to cyclohexanone over alkali–metal-promoted Pd/TiO ₂ in aqueous media. Green Chemistry, 2017, 19, 3585-3594.	4.6	88

#	Article	IF	CITATIONS
127	Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (â _i)-Based Metal-Organic Framework. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 242-248.	2.2	3
128	Synthesis, crystal structure and luminescence studies of zinc(<scp>ii</scp>) and cadmium(<scp>ii</scp>) complexes with 6-(1H-tetrazol-5-yl)-2-naphthoic acid. CrystEngComm, 2016, 18, 6396-6402.	1.3	13
129	Magnetic Properties of a Singleâ€Molecule Lanthanide–Transitionâ€Metal Compound Containing 52 Gadolinium and 56 Nickel Atoms. Angewandte Chemie - International Edition, 2016, 55, 4532-4536.	7.2	60
130	Multifaceted Bicubane Co4Clusters: Magnetism, Photocatalytic Oxygen Evolution, and Electrical Conductivity. European Journal of Inorganic Chemistry, 2016, 2016, 3253-3261.	1.0	14
131	Octanuclear Ni(<scp>ii</scp>) cubes based on halogen-substituted pyrazolates: synthesis, structure, electrochemistry and magnetism. CrystEngComm, 2016, 18, 3462-3471.	1.3	22
132	Near-Infrared Emitters: Stepwise Assembly of Two Heteropolynuclear Clusters with Tunable Ag ^I :Zn ^{II} Ratio. Inorganic Chemistry, 2016, 55, 4757-4763.	1.9	35
133	Twin-like ternary PtCoFe alloy in nitrogen-doped graphene nanopores as a highly effective electrocatalyst for oxygen reduction. Catalysis Science and Technology, 2016, 6, 5942-5948.	2.1	15
134	Highâ€Nuclear Organometallic Copper(I)–Alkynide Clusters: Thermochromic Nearâ€Infrared Luminescence and Solution Stability. Chemistry - A European Journal, 2016, 22, 17619-17626.	1.7	65
135	lonothermal synthesis, magnetic transformation and hydration–dehydration properties of Co(<scp>ii</scp>)-based coordination polymers. RSC Advances, 2016, 6, 71952-71957.	1.7	4
136	Mo Doping Induced More Active Sites in Urchinâ€Like W ₁₈ O ₄₉ Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 5778-5786.	7.8	177
137	Magnetic Properties of a Singleâ€Molecule Lanthanide–Transitionâ€Metal Compound Containing 52 Gadolinium and 56 Nickel Atoms. Angewandte Chemie, 2016, 128, 4608-4612.	1.6	9
138	Integrating cobalt phosphide and cobalt nitride-embedded nitrogen-rich nanocarbons: high-performance bifunctional electrocatalysts for oxygen reduction and evolution. Journal of Materials Chemistry A, 2016, 4, 10575-10584.	5.2	141
139	Enantioselective Allylic Substitution of Morita–Baylis–Hillman Adducts Catalyzed by Chiral Bifunctional Ferrocenylphosphines. European Journal of Organic Chemistry, 2016, 2016, 2139-2144.	1.2	22
140	Structural, electrochemical and magnetic analyses of a new octanuclear Mn ^{III} ₂ Mn ^{III cluster with linked-defect cubane topology. CrystEngComm, 2016, 18, 1329-1336.}	1.3	10
141	Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al ₂ O ₃ /Au(111) Catalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1674-1680.	2.2	O
142	Robust Cluster Building Unit: Icosanuclear Heteropolyoxocopperate Templated by Carbonate. Chemistry - A European Journal, 2015, 21, 18847-18854.	1.7	56
143	Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogenâ€Doped Hollow Carbon Spheres for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 1826-1832.	1.8	62
144	Dual Catalysis for the Redox Annulation of Nitroalkynes with Indoles: Enantioselective Construction of Indolinâ€3â€ones Bearing Quaternary Stereocenters. Angewandte Chemie - International Edition, 2015, 54, 11205-11208.	7.2	104

#	Article	IF	CITATIONS
145	In Situ Fabrication of PtCo Alloy Embedded in Nitrogenâ€Doped Graphene Nanopores as Synergistic Catalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces, 2015, 2, 1500365.	1.9	21
146	Two nanosized 3d–4f clusters featuring four Ln ₆ octahedra encapsulating a Zn ₄ tetrahedron. Chemical Communications, 2015, 51, 10687-10690.	2.2	53
147	Multicoloredâ€Fluorescence Switching of ICTâ€Type Organic Solids with Clear Color Difference: Mechanically Controlled Excited State. Chemistry - A European Journal, 2015, 21, 2474-2479.	1.7	189
148	Ionothermal synthesis, fluorescence, and DFT calculation of three lanthanide-based metal-organic frameworks. Inorganic Chemistry Communication, 2015, 60, 4-7.	1.8	9
149	Role of pretreatment with acid and base on the distribution of the products obtained via lignocellulosic biomass pyrolysis. RSC Advances, 2015, 5, 24984-24989.	1.7	28
150	Preparation and catalytic properties of Pd nanoparticles supported on micro-crystal DUT-67 MOFs. RSC Advances, 2015, 5, 32714-32719.	1.7	27
151	In Situ Construction of Three Anion-Dependent Cu(I) Coordination Networks as Promising Heterogeneous Catalysts for Azide–Alkyne "Click―Reactions. Inorganic Chemistry, 2015, 54, 4737-4743.	1.9	111
152	Synergistic effect of S,N-co-doped mesoporous carbon materials with high performance for oxygen-reduction reaction and Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 20244-20253.	5.2	53
153	Effect of graphene with nanopores on metal clusters. Physical Chemistry Chemical Physics, 2015, 17, 24420-24426.	1.3	13
154	Lanthanide-based metal–peptide frameworks prepared by ionothermal method: Anion direct effect, DFT calculation and luminescence property. Inorganic Chemistry Communication, 2014, 42, 29-32.	1.8	2
155	A radar-like iron based nanohybrid as an efficient and stable electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 6703-6707.	5. 2	18
156	Heating and mechanical force-induced luminescence on–off switching of arylamine derivatives with highly distorted structures. Journal of Materials Chemistry C, 2014, 2, 195-200.	2.7	83
157	Pyridyne cycloaddition of graphene: "external―active sites for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 897-901.	5.2	33
158	TiO 2 nanobelts with a uniform coating of g-C 3 N 4 as a highly effective heterostructure for enhanced photocatalytic activities. Journal of Solid State Chemistry, 2014, 220, 54-59.	1.4	63
159	Geometric and electronic properties of graphene modified by "external―N-containing groups. Physical Chemistry Chemical Physics, 2014, 16, 20749-20754.	1.3	11
160	The ionothermal synthesis, structure, and magnetism–structure relationship of two biphenyl tetracarboxylic acid-based metal–organic frameworks. Dalton Transactions, 2014, 43, 16515-16521.	1.6	15
161	Synthesis, properties, and magnetism–structure relationship of lanthanide-based metal–organic frameworks with (ethylenedithio)acetic acid. CrystEngComm, 2014, 16, 6963.	1.3	16
162	Pt@Au Nanorods Uniformly Decorated on Pyridyne Cycloaddition Graphene as a Highly Effective Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13448-13454.	4.0	38

#	Article	IF	Citations
163	Additives initiate selective production of chemicals from biomass pyrolysis. Bioresource Technology, 2014, 156, 376-379.	4.8	7
164	Experimental, DFT and quantum Monte Carlo studies of a series of peptide-based metal–organic frameworks: synthesis, structures and properties. Inorganic Chemistry Frontiers, 2014, 1, 526-533.	3.0	10
165	Density functional theory study of <i>p</i> â€chloroaniline adsorption on Pd surfaces and clusters. International Journal of Quantum Chemistry, 2014, 114, 895-899.	1.0	6
166	NiFe/ \hat{I}^3 -Al2O3: A universal catalyst for the hydrodeoxygenation of bio-oil and its model compounds. Catalysis Communications, 2013, 41, 34-37.	1.6	66
167	Mechanochromic and thermochromic fluorescent properties ofÂcyanostilbene derivatives. Dyes and Pigments, 2013, 98, 486-492.	2.0	74
168	Hybrid nanotube–graphene junctions: spin degeneracy breaking and tunable electronic structure. Physical Chemistry Chemical Physics, 2013, 15, 20281.	1.3	5
169	Solvent-free catalytic dehydrative etherification of benzyl alcohol over graphene oxide. Chemical Physics Letters, 2013, 583, 146-150.	1.2	11
170	Coronal multi-walled silicon nanotubes. Journal of Energy Chemistry, 2013, 22, 408-412.	7.1	12
171	A novel LallI-based metal–organic framework (MOF) with a new topology: poly[diaquabis(μ5-2,5-dioxopiperazine-1,4-diacetato)(μ2-oxalato)dilanthanum(III)]. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 5-7.	0.4	1
172	Synthesis, Structures, and Magnetic Properties of Three Decanuclear Ln ₂ Cu ₈ Clusters of Alkylsulfonate. Crystal Growth and Design, 2013, 13, 2493-2498.	1.4	37
173	The effect of earth metal ion on the property of peptide-based metal–organic frameworks. CrystEngComm, 2013, 15, 5545.	1.3	12
174	Synthesis, Magnetism, and Thermostability of a Series of Twoâ€Dimensional Lanthanide–Nickel Heterometallic Coordination Polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 817-820.	0.6	3
175	Tuning the catalytic property of TiO2 nanotube arrays for water splitting. International Journal of Hydrogen Energy, 2013, 38, 2095-2105.	3.8	13
176	A DFT study of gas molecules adsorption on the anatase (001) nanotube arrays. Computational Materials Science, 2013, 67, 174-181.	1.4	39
177	Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 2012, 3, 1298.	5.8	538
178	N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies. Journal of Solid State Chemistry, 2012, 192, 284-288.	1.4	7
179	Synthesis, magnetism and quantum Monte Carlo studies of two Cu(II)-based ferromagnetic coordination polymers. Inorganic Chemistry Communication, 2012, 22, 18-21.	1.8	5
180	Position of substituent dependent dimensionality in Ln–Cu heterometallic coordination polymers. CrystEngComm, 2012, 14, 679-683.	1.3	16

#	Article	IF	Citations
181	A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. Journal of Materials Chemistry, 2012, 22, 2868.	6.7	90
182	Water oxidation on Nâ€Doped TiO ₂ nanotube arrays. International Journal of Quantum Chemistry, 2012, 112, 2585-2590.	1.0	10
183	Magnetic and thermal properties of three ionothermally synthesized metal–carboxylate frameworks of [M3(ip)4][EMIm]2 (M = Co, Ni, Mn, H2ip = isophthalic acid, EMIm = 1-ethyl-3-methyl imidazolium). Dalton Transactions, 2011, 40, 10237.	1.6	36
184	CO Oxidation by Lattice Oxygen on V ₂ O ₅ Nanotubes. Journal of Physical Chemistry C, 2011, 115, 14806-14811.	1.5	19
185	Two Three-Dimensional 2pâ^3dâ^34f Heterometallic Frameworks Featuring a Ln ₆ Cu ₂₄ Na ₁₂ Cluster as a Node. Inorganic Chemistry, 2011, 50, 3843-3845.	1.9	44
186	Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field. Physical Chemistry Chemical Physics, 2011, 13, 12472.	1.3	87
187	Temperature-dependent conductivity of Emim+ (Emim+ = 1-ethyl-3-methyl imidazolium) confined in channels of a metal–organic framework. Chemical Communications, 2011, 47, 11933.	2.2	73
188	Control of Selfâ€Assembled 2D Nanostructures by Methylation of Guanine. Small, 2011, 7, 939-949.	5.2	19
189	Effect of lanthanide contraction on crystal structures of lanthanide coordination polymers with 2,5-piperazinedione-1,4-diacetic acid. CrystEngComm, 2010, 12, 2691.	1.3	46
190	A nanosized Gd6Ni3 cluster-based heterometallic coordination polymer. Dalton Transactions, 2010, 39, 5077.	1.6	25
191	The synthesis of a 3d–4f polynuclear metal cluster under microwave irradiation: crystal structure and magnetic property of [La3Ni6(IDA)6(OH)6(H2O)12]·3NO3·15H2O (IDA = iminodiacetate). Dalton Transactions, 2009, , 4640.	1.6	24
192	In situ cyclodehydration of iminodiacetic acid into 2,5-diketopiperazine-1,4-diacetate in lanthanide-based coordination polymers. Dalton Transactions, 2009, , 1707.	1.6	19
193	Experimental and theoretical demonstration of ferroelectric anisotropy in a one-dimensional copper(ii)-based coordination polymer. Chemical Communications, 2009, , 1644.	2.2	25
194	Chapter 4. Computational catalysis in nanotubes. Catalysis, 0, , 109-160.	0.6	3