
Gui-lin Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4676122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 2012, 3, 1298.	5.8	538
2	A superior fluorescent sensor for Al ³⁺ and UO ₂ ²⁺ based on a Co(<scp>ii</scp>) metal–organic framework with exposed pyrimidyl Lewis base sites. Journal of Materials Chemistry A, 2017, 5, 13079-13085.	5.2	287
3	Hierarchical Porous NC@CuCo Nitride Nanosheet Networks: Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting and Selective Electrooxidation of Benzyl Alcohol. Advanced Functional Materials, 2017, 27, 1704169.	7.8	267
4	A Gigantic Molecular Wheel of {Gd ₁₄₀ }: A New Member of the Molecular Wheel Family. Journal of the American Chemical Society, 2017, 139, 18178-18181.	6.6	229
5	Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nature Communications, 2018, 9, 3353.	5.8	195
6	Multicoloredâ€Fluorescence Switching of ICTâ€Type Organic Solids with Clear Color Difference: Mechanically Controlled Excited State. Chemistry - A European Journal, 2015, 21, 2474-2479.	1.7	189
7	Mo Doping Induced More Active Sites in Urchinâ€Like W ₁₈ O ₄₉ Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 5778-5786.	7.8	177
8	Oxygen vacancies on TiO ₂ promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2264-2272.	5.2	163
9	Integrating cobalt phosphide and cobalt nitride-embedded nitrogen-rich nanocarbons: high-performance bifunctional electrocatalysts for oxygen reduction and evolution. Journal of Materials Chemistry A, 2016, 4, 10575-10584.	5.2	141
10	Biomass Valorization via Paired Electrosynthesis Over Vanadium Nitrideâ€Based Electrocatalysts. Advanced Functional Materials, 2019, 29, 1904780.	7.8	120
11	In Situ Construction of Three Anion-Dependent Cu(I) Coordination Networks as Promising Heterogeneous Catalysts for Azide–Alkyne "Click―Reactions. Inorganic Chemistry, 2015, 54, 4737-4743.	1.9	111
12	ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chemical Engineering Journal, 2017, 330, 1255-1264.	6.6	110
13	H-Bond-Mediated Selectivity Control of Formate versus CO during CO ₂ Photoreduction with Two Cooperative Cu/X Sites. Journal of the American Chemical Society, 2021, 143, 6114-6122.	6.6	105
14	Dual Catalysis for the Redox Annulation of Nitroalkynes with Indoles: Enantioselective Construction of Indolinâ€3â€ones Bearing Quaternary Stereocenters. Angewandte Chemie - International Edition, 2015, 54, 11205-11208.	7.2	104
15	Mo2TiC2 MXene: A Promising Catalyst for Electrocatalytic Ammonia Synthesis. Catalysis Today, 2020, 339, 120-126.	2.2	102
16	Photoconductive Curvedâ€Nanographene/Fullerene Supramolecular Heterojunctions. Angewandte Chemie - International Edition, 2019, 58, 6244-6249.	7.2	99
17	A Large Ï€â€Extended Carbon Nanoring Based on Nanographene Units: Bottomâ€Up Synthesis, Photophysical Properties, and Selective Complexation with Fullerene C ₇₀ . Angewandte Chemie - International Edition, 2017, 56, 158-162.	7.2	95
18	Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chemical Engineering Journal, 2019, 362, 41-52.	6.6	95

#	Article	IF	CITATIONS
19	PtPd alloy embedded in nitrogen-rich graphene nanopores: High-performance bifunctional electrocatalysts for hydrogen evolution and oxygen reduction. Carbon, 2017, 114, 740-748.	5.4	94
20	A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. Journal of Materials Chemistry, 2012, 22, 2868.	6.7	90
21	Highly Efficient Ammonia Synthesis Electrocatalyst: Single Ru Atom on Naturally Nanoporous Carbon Materials. Advanced Theory and Simulations, 2018, 1, 1800018.	1.3	90
22	Selective phenol hydrogenation to cyclohexanone over alkali–metal-promoted Pd/TiO ₂ in aqueous media. Green Chemistry, 2017, 19, 3585-3594.	4.6	88
23	Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field. Physical Chemistry Chemical Physics, 2011, 13, 12472.	1.3	87
24	Selective Synthesis of Conjugated Chiral Macrocycles: Sidewall Segments of (â^)/(+)â€(12,4) Carbon Nanotubes with Strong Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2020, 59, 1619-1626.	7.2	85
25	Heating and mechanical force-induced luminescence on–off switching of arylamine derivatives with highly distorted structures. Journal of Materials Chemistry C, 2014, 2, 195-200.	2.7	83
26	Single and double boron atoms doped nanoporous C ₂ N– <i>h</i> 2D electrocatalysts for highly efficient N ₂ reduction reaction: a density functional theory study. Nanotechnology, 2019, 30, 335403.	1.3	81
27	Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2. Journal of Energy Chemistry, 2019, 39, 144-151.	7.1	79
28	A theoretical study of electrocatalytic ammonia synthesis on single metal atom/MXene. Chinese Journal of Catalysis, 2019, 40, 152-159.	6.9	76
29	A Threeâ€Dimensional Capsuleâ€like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon Nanotubes: Synthesis, Characterization, and Complexation with C ₇₀ . Angewandte Chemie - International Edition, 2018, 57, 9330-9335.	7.2	75
30	Mechanochromic and thermochromic fluorescent properties ofÂcyanostilbene derivatives. Dyes and Pigments, 2013, 98, 486-492.	2.0	74
31	Temperature-dependent conductivity of Emim+ (Emim+ = 1-ethyl-3-methyl imidazolium) confined in channels of a metal–organic framework. Chemical Communications, 2011, 47, 11933.	2.2	73
32	Defect engineering of nickel hydroxide nanosheets by Ostwald ripening for enhanced selective electrocatalytic alcohol oxidation. Green Chemistry, 2019, 21, 578-588.	4.6	71
33	Electrocatalytic Upgrading of Ligninâ€Derived Bioâ€Oil Based on Surfaceâ€Engineered PtNiB Nanostructure. Advanced Functional Materials, 2019, 29, 1807651.	7.8	70
34	NiFe/Î ³ -Al2O3: A universal catalyst for the hydrodeoxygenation of bio-oil and its model compounds. Catalysis Communications, 2013, 41, 34-37.	1.6	66
35	Highâ€Nuclear Organometallic Copper(I)–Alkynide Clusters: Thermochromic Nearâ€Infrared Luminescence and Solution Stability. Chemistry - A European Journal, 2016, 22, 17619-17626.	1.7	65
36	TiO 2 nanobelts with a uniform coating of g-C 3 N 4 as a highly effective heterostructure for enhanced photocatalytic activities. Journal of Solid State Chemistry, 2014, 220, 54-59.	1.4	63

#	Article	IF	CITATIONS
37	Carboxylic acid stimulated silver shell isomerism in a triple core–shell Ag ₈₄ nanocluster. Chemical Science, 2019, 10, 4862-4867.	3.7	63
38	Functionalization Ti3C2 MXene by the adsorption or substitution of single metal atom. Applied Surface Science, 2019, 465, 911-918.	3.1	63
39	Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogenâ€Doped Hollow Carbon Spheres for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 1826-1832.	1.8	62
40	Magnetic Properties of a Singleâ€Molecule Lanthanide–Transitionâ€Metal Compound Containing 52 Gadolinium and 56 Nickel Atoms. Angewandte Chemie - International Edition, 2016, 55, 4532-4536.	7.2	60
41	Unusual fcc-structured Ag ₁₀ kernels trapped in Ag ₇₀ nanoclusters. Chemical Science, 2019, 10, 564-568.	3.7	60
42	Robust Cluster Building Unit: Icosanuclear Heteropolyoxocopperate Templated by Carbonate. Chemistry - A European Journal, 2015, 21, 18847-18854.	1.7	56
43	Two nanosized 3d–4f clusters featuring four Ln ₆ octahedra encapsulating a Zn ₄ tetrahedron. Chemical Communications, 2015, 51, 10687-10690.	2.2	53
44	Synergistic effect of S,N-co-doped mesoporous carbon materials with high performance for oxygen-reduction reaction and Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 20244-20253.	5.2	53
45	A Large Ï€â€Extended Carbon Nanoring Based on Nanographene Units: Bottomâ€Up Synthesis, Photophysical Properties, and Selective Complexation with Fullerene C 70. Angewandte Chemie, 2017, 129, 164-168.	1.6	52
46	A highly robust heterometallic Tb ^{III} /Ni ^{II} –organic framework for C ₂ hydrocarbon separation and capture. Chemical Communications, 2020, 56, 2047-2050.	2.2	52
47	High-Throughput Screening of Hydrogen Evolution Reaction Catalysts in MXene Materials. Journal of Physical Chemistry C, 2020, 124, 13695-13705.	1.5	51
48	Effects of surface functionalization of mxene-based nanocatalysts on hydrogen evolution reaction performance. Catalysis Today, 2021, 368, 187-195.	2.2	51
49	Improved Oxygen Reduction Reaction Performance of Co Confined in Ordered N-Doped Porous Carbon Derived from ZIF-67@PILs. Industrial & Engineering Chemistry Research, 2017, 56, 11100-11110.	1.8	50
50	Optimizing Alkyne Hydrogenation Performance of Pd on Carbon in Situ Decorated with Oxygen-Deficient TiO ₂ by Integrating the Reaction and Diffusion. ACS Catalysis, 2019, 9, 10656-10667.	5.5	50
51	Insights into Magnetic Interactions in a Monodisperse Gd ₁₂ Fe ₁₄ Metal Cluster. Angewandte Chemie - International Edition, 2017, 56, 11475-11479.	7.2	48
52	Encapsulating a Ni(II) molecular catalyst in photoactive metal–organic framework for highly efficient photoreduction of CO2. Science Bulletin, 2019, 64, 976-985.	4.3	48
53	Effect of lanthanide contraction on crystal structures of lanthanide coordination polymers with 2,5-piperazinedione-1,4-diacetic acid. CrystEngComm, 2010, 12, 2691.	1.3	46
54	An unexpected dual-emissive luminogen with tunable aggregation-induced emission and enhanced chiroptical property. Nature Communications, 2022, 13, .	5.8	45

#	Article	IF	CITATIONS
55	Two Three-Dimensional 2pâ^'3dâ^'4f Heterometallic Frameworks Featuring a Ln ₆ Cu ₂₄ Na ₁₂ Cluster as a Node. Inorganic Chemistry, 2011, 50, 3843-3845.	1.9	44
56	Simultaneous electrochemical ozone production and hydrogen evolution by using tantalum-based nanorods electrocatalysts. Applied Catalysis B: Environmental, 2020, 266, 118632.	10.8	42
57	A Highly Strained Allâ€Phenylene Conjoined Bismacrocycle. Angewandte Chemie - International Edition, 2021, 60, 17368-17372.	7.2	42
58	A Long π-Conjugated Poly(<i>para</i> -Phenylene)-Based Polymeric Segment of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2019, 141, 18938-18943.	6.6	41
59	Hydrogen peroxide electrochemical synthesis on hybrid double-atom (Pd–Cu) doped N vacancy g-C ₃ N ₄ : a novel design strategy for electrocatalyst screening. Journal of Materials Chemistry A, 2020, 8, 2672-2683.	5.2	40
60	A DFT study of gas molecules adsorption on the anatase (001) nanotube arrays. Computational Materials Science, 2013, 67, 174-181.	1.4	39
61	Unconventional Method for Fabricating Valence Tautomeric Materials: Integrating Redox Center within a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 6822-6826.	6.6	39
62	Pt@Au Nanorods Uniformly Decorated on Pyridyne Cycloaddition Graphene as a Highly Effective Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Interfaces, 2014, 6, 13448-13454.	4.0	38
63	A Threeâ€Dimensional Capsuleâ€like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon Nanotubes: Synthesis, Characterization, and Complexation with C ₇₀ . Angewandte Chemie, 2018, 130, 9474-9479.	1.6	38
64	Selective Synthesis of Conjugated Chiral Macrocycles: Sidewall Segments of (â^')/(+)â€(12,4) Carbon Nanotubes with Strong Circularly Polarized Luminescence. Angewandte Chemie, 2020, 132, 1636-1643.	1.6	38
65	Synthesis, Structures, and Magnetic Properties of Three Decanuclear Ln ₂ Cu ₈ Clusters of Alkylsulfonate. Crystal Growth and Design, 2013, 13, 2493-2498.	1.4	37
66	Magnetic and thermal properties of three ionothermally synthesized metal–carboxylate frameworks of [M3(ip)4][EMIm]2 (M = Co, Ni, Mn, H2ip = isophthalic acid, EMIm = 1-ethyl-3-methyl imidazolium). Dalton Transactions, 2011, 40, 10237.	1.6	36
67	Double Nanoporous Structure with Nanoporous PtFe Embedded in Graphene Nanopores: Highly Efficient Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Reduction. Advanced Materials Interfaces, 2017, 4, 1601029.	1.9	36
68	Tuning the confinement space of N-carbon shell-coated ruthenium nanoparticles: highly efficient electrocatalysts for hydrogen evolution reaction. Catalysis Science and Technology, 2017, 7, 4964-4970.	2.1	36
69	Near-Infrared Emitters: Stepwise Assembly of Two Heteropolynuclear Clusters with Tunable Ag ^I :Zn ^{II} Ratio. Inorganic Chemistry, 2016, 55, 4757-4763.	1.9	35
70	A hexadecanuclear silver alkynyl cluster based NbO framework with triple emissions from the visible to near-infrared II region. Chemical Communications, 2018, 54, 11905-11908.	2.2	35
71	Multifunctional luminescent magnetic cryocooler in a Gd ₅ Mn ₂ pyramidal complex. Chemical Communications, 2018, 54, 4104-4107.	2.2	34
72	Pyridyne cycloaddition of graphene: "external―active sites for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 897-901.	5.2	33

#	Article	IF	CITATIONS
73	Series of Highly Stable Lanthanide-Organic Frameworks Constructed by a Bifunctional Linker: Synthesis, Crystal Structures, and Magnetic and Luminescence Properties. Inorganic Chemistry, 2018, 57, 2577-2583.	1.9	33
74	A strain-controlled C2N monolayer membrane for gas separation in PEMFC application. Applied Surface Science, 2018, 441, 408-414.	3.1	33
75	Combining N,S-Codoped C and CeO ₂ : A Unique Hinge-like Structure for Efficient Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2020, 59, 937-942.	1.9	33
76	Trace water triggers high-efficiency photocatalytic hydrogen peroxide production. Journal of Energy Chemistry, 2022, 64, 47-54.	7.1	33
77	Enhanced Selectivity of Phenol Hydrogenation in Low-Pressure CO ₂ over Supported Pd Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 11628-11636.	3.2	30
78	Photoconductive Curvedâ€Nanographene/Fullerene Supramolecular Heterojunctions. Angewandte Chemie, 2019, 131, 6310-6315.	1.6	30
79	Role of pretreatment with acid and base on the distribution of the products obtained via lignocellulosic biomass pyrolysis. RSC Advances, 2015, 5, 24984-24989.	1.7	28
80	Precise synthesis and photophysical properties of a small chiral carbon nanotube segment: cyclo[7]paraphenylene-2,6-naphthylene. Chemical Communications, 2019, 55, 9456-9459.	2.2	28
81	Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles. Chemical Engineering Journal, 2021, 408, 127358.	6.6	28
82	Spatially Separated Photoinduced Charge Carriers for the Enhanced Photocatalysis Over the One-Dimensional Yolk–Shell In ₂ Se ₃ @N-C Nanoreactor. ACS Catalysis, 2021, 11, 12931-12939.	5.5	28
83	Preparation and catalytic properties of Pd nanoparticles supported on micro-crystal DUT-67 MOFs. RSC Advances, 2015, 5, 32714-32719.	1.7	27
84	Fabrication of Pd/In ₂ O ₃ Nanocatalysts Derived from MIL-68(In) Loaded with Molecular Metalloporphyrin (TCPP(Pd)) Toward CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2022, 12, 709-723.	5.5	27
85	Atomically dispersed Pd catalysts in graphyne nanopore: formation and reactivity. Nanotechnology, 2017, 28, 295403.	1.3	26
86	A novel symmetrically multifunctionalized dodecamethoxy-cycloparaphenylene: synthesis, photophysical, and supramolecular properties. Organic Chemistry Frontiers, 2018, 5, 1446-1451.	2.3	26
87	Experimental and theoretical demonstration of ferroelectric anisotropy in a one-dimensional copper(ii)-based coordination polymer. Chemical Communications, 2009, , 1644.	2.2	25
88	A nanosized Gd6Ni3 cluster-based heterometallic coordination polymer. Dalton Transactions, 2010, 39, 5077.	1.6	25
89	Nanosized Chiral [Mn ₆ Ln ₂] Clusters Modeled by Enantiomeric Schiff Base Derivatives: Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 8639-8645.	1.9	25
90	The synthesis of a 3d–4f polynuclear metal cluster under microwave irradiation: crystal structure and magnetic property of [La3Ni6(IDA)6(OH)6(H2O)12]·3NO3·15H2O (IDA = iminodiacetate). Dalton Transactions, 2009, , 4640.	1.6	24

#	Article	IF	CITATIONS
91	Oxygen Groups Enhancing the Mechanism of Nitrogen Reduction Reaction Properties on Ru- or Fe-Supported Nb ₂ C MXene. Journal of Physical Chemistry C, 2021, 125, 14636-14645.	1.5	24
92	Hierarchical tandem assembly of planar [3×3] building units into {3×[3×3]} oligomers: mixed-valency, electrical conductivity and magnetism. Chemical Science, 2018, 9, 7498-7504.	3.7	23
93	Synthesis of Giant ï€â€Extended Molecular Macrocyclic Rings as Finite Models of Carbon Nanotubes Displaying Enriched Sizeâ€Dependent Physical Properties. Chemistry - A European Journal, 2020, 26, 2159-2163.	1.7	23
94	Octanuclear Ni(<scp>ii</scp>) cubes based on halogen-substituted pyrazolates: synthesis, structure, electrochemistry and magnetism. CrystEngComm, 2016, 18, 3462-3471.	1.3	22
95	Enantioselective Allylic Substitution of Morita–Baylis–Hillman Adducts Catalyzed by Chiral Bifunctional Ferrocenylphosphines. European Journal of Organic Chemistry, 2016, 2016, 2139-2144.	1.2	22
96	Magnetic Interaction Affecting the Zero-Field Single-Molecule Magnet Behaviors in Isomorphic {Ni ^{II} ₂ Dy ^{III} ₂ } and {Co ^{II} ₂ Dy ^{III} ₂ } Tetranuclear Complexes. Inorganic Chemistry, 2017, 56, 11387-11397.	1.9	22
97	Palladium Dimer Supported on Mo ₂ CO ₂ (MXene) for Direct Methane to Methanol Conversion. Advanced Theory and Simulations, 2019, 2, 1800158.	1.3	22
98	Building highly active hybrid double–atom sites in C2N for enhanced electrocatalytic hydrogen peroxide synthesis. Green Energy and Environment, 2021, 6, 846-857.	4.7	22
99	In Situ Fabrication of PtCo Alloy Embedded in Nitrogenâ€Doped Graphene Nanopores as Synergistic Catalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces, 2015, 2, 1500365.	1.9	21
100	Sophisticated Construction of Electronically Labile Materials: A Neutral, Radical-Rich, Cobalt Valence Tautomeric Triangle. Journal of the American Chemical Society, 2018, 140, 14581-14585.	6.6	21
101	The Mechanism of the Magnetodielectric Response in a Moleculeâ€Based Trinuclear Iron Cluster Material. Angewandte Chemie - International Edition, 2020, 59, 14409-14413.	7.2	21
102	Anion-Dependent Assembly of 3d–4f Heterometallic Clusters Ln ₅ Cr ₂ and Ln ₈ Cr ₄ . Inorganic Chemistry, 2020, 59, 1959-1966.	1.9	21
103	Enantioselective Recognition and Separation of <i>C</i> ₂ Symmetric Substances via Chiral Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 37412-37421.	4.0	21
104	Magnetocaloric Effect and Slow Magnetic Relaxation on Two-Dimensional Layered 3d-4f Cluster-Based Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 4005-4012.	1.4	20
105	Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces. Nature Communications, 2022, 13, 1239.	5.8	20
106	In situ cyclodehydration of iminodiacetic acid into 2,5-diketopiperazine-1,4-diacetate in lanthanide-based coordination polymers. Dalton Transactions, 2009, , 1707.	1.6	19
107	CO Oxidation by Lattice Oxygen on V ₂ O ₅ Nanotubes. Journal of Physical Chemistry C, 2011, 115, 14806-14811.	1.5	19
108	Control of Selfâ€Assembled 2D Nanostructures by Methylation of Guanine. Small, 2011, 7, 939-949.	5.2	19

#	Article	IF	CITATIONS
109	Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines. Nature Communications, 2022, 13, 1802.	5.8	19
110	A radar-like iron based nanohybrid as an efficient and stable electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 6703-6707.	5.2	18
111	The Effect of N ontaining Supports on Catalytic CO Oxidation Activity over Highly Dispersed Pt/UiOâ€67. European Journal of Inorganic Chemistry, 2017, 2017, 172-178.	1.0	18
112	Multifunctionalized octamethoxy-[8]cycloparaphenylene: facile synthesis and analysis of novel photophysical and photoinduced electron transfer properties. Organic Chemistry Frontiers, 2019, 6, 1885-1890.	2.3	18
113	Hydrogen peroxide synthesis on porous graphitic carbon nitride using water as a hydrogen source. Journal of Materials Chemistry A, 2020, 8, 124-137.	5.2	18
114	Integration of bio-inspired lanthanide-transition metal cluster and P-doped carbon nitride for efficient photocatalytic overall water splitting. National Science Review, 2021, 8, nwaa234.	4.6	18
115	Tuning the (Chir)Optical Properties and Squeezing out the Inherent Chirality in Polyphenylene‣ocked Helical Carbon Nanorings. Chemistry - A European Journal, 2022, 28, .	1.7	18
116	Position of substituent dependent dimensionality in Ln–Cu heterometallic coordination polymers. CrystEngComm, 2012, 14, 679-683.	1.3	16
117	Synthesis, properties, and magnetism–structure relationship of lanthanide-based metal–organic frameworks with (ethylenedithio)acetic acid. CrystEngComm, 2014, 16, 6963.	1.3	16
118	Enhanced Catalytic Performances for Guaiacol Aqueous Phase Hydrogenation over Ruthenium Supported on Mesoporous TiO ₂ Hollow Spheres Embedded with SiO ₂ Nanoparticles. ChemistrySelect, 2017, 2, 9599-9606.	0.7	16
119	Synthesis and properties of a nanographene-embedded conjugated macrocyclic nanoring <i>via</i> the Scholl reaction. Chemical Communications, 2021, 57, 9104-9107.	2.2	16
120	The ionothermal synthesis, structure, and magnetism–structure relationship of two biphenyl tetracarboxylic acid-based metal–organic frameworks. Dalton Transactions, 2014, 43, 16515-16521.	1.6	15
121	Twin-like ternary PtCoFe alloy in nitrogen-doped graphene nanopores as a highly effective electrocatalyst for oxygen reduction. Catalysis Science and Technology, 2016, 6, 5942-5948.	2.1	15
122	Dual effect of the coordination field and sulphuric acid on the properties of a single-atom catalyst in the electrosynthesis of H ₂ 0 ₂ . Physical Chemistry Chemical Physics, 2021, 23, 21338-21349.	1.3	15
123	Multifaceted Bicubane Co4Clusters: Magnetism, Photocatalytic Oxygen Evolution, and Electrical Conductivity. European Journal of Inorganic Chemistry, 2016, 2016, 3253-3261.	1.0	14
124	Trace phosphorusâ~'doping significantly improving S-content of binaryâ~'doped mesoporous carbon network with enhancing electrochemical performance. Microporous and Mesoporous Materials, 2018, 256, 75-83.	2.2	14
125	Through-space π-delocalization in a conjugated macrocycle consisting of [2.2]paracyclophane. Chemical Communications, 2019, 55, 14617-14620.	2.2	14
126	Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N-heteroarenes. Chinese Journal of Catalysis, 2021, 42, 1185-1194.	6.9	14

#	Article	IF	CITATIONS
127	Tuning the catalytic property of TiO2 nanotube arrays for water splitting. International Journal of Hydrogen Energy, 2013, 38, 2095-2105.	3.8	13
128	Effect of graphene with nanopores on metal clusters. Physical Chemistry Chemical Physics, 2015, 17, 24420-24426.	1.3	13
129	Synthesis, crystal structure and luminescence studies of zinc(<scp>ii</scp>) and cadmium(<scp>ii</scp>) complexes with 6-(1H-tetrazol-5-yl)-2-naphthoic acid. CrystEngComm, 2016, 18, 6396-6402.	1.3	13
130	Multiscale Simulation on Product Distribution from Pyrolysis of Styrene-Butadiene Rubber. Polymers, 2019, 11, 1967.	2.0	13
131	Defect CTF derived Ru-based catalysts for high performance overall water splitting reaction. Journal of Energy Chemistry, 2020, 50, 135-142.	7.1	13
132	Bovine serum albumin templated porous CeO2 to support Au catalyst for benzene oxidation. Molecular Catalysis, 2020, 486, 110849.	1.0	13
133	Regulating the Electronic Structure and Active Sites in Ni Nanoparticles by Coating N-Doped C Layer and Porous Structure for an Efficient Overall Water Splitting. Inorganic Chemistry, 2021, 60, 6764-6771.	1.9	13
134	High electrocatalytical performance of FeCoNiCuPd high-entropy alloy for nitrogen reduction reaction. Molecular Catalysis, 2022, 519, 112141.	1.0	13
135	Enhancing mechanism of electron-deficient p states on photocatalytic activity of g-C ₃ N ₄ for CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 9565-9574.	5.2	13
136	Coronal multi-walled silicon nanotubes. Journal of Energy Chemistry, 2013, 22, 408-412.	7.1	12
137	The effect of earth metal ion on the property of peptide-based metal–organic frameworks. CrystEngComm, 2013, 15, 5545.	1.3	12
138	A series of transition metal coordination polymers based on a rigid bi-functional carboxylate–triazolate tecton. CrystEngComm, 2017, 19, 4586-4594.	1.3	12
139	Temperature dependence of spherical electron transfer in a nanosized [Fe14] complex. Nature Communications, 2019, 10, 5510.	5.8	12
140	High-performance single-atom Ni catalyst loaded graphyne for H2O2 green synthesis in aqueous media. Journal of Colloid and Interface Science, 2021, 599, 58-67.	5.0	12
141	Solvent-free catalytic dehydrative etherification of benzyl alcohol over graphene oxide. Chemical Physics Letters, 2013, 583, 146-150.	1.2	11
142	Geometric and electronic properties of graphene modified by "external―N-containing groups. Physical Chemistry Chemical Physics, 2014, 16, 20749-20754.	1.3	11
143	A Highly Strained Allâ€₽henylene Conjoined Bismacrocycle. Angewandte Chemie, 2021, 133, 17508-17512.	1.6	11
144	Family of Nanoclusters, Ln ₃₃ (Ln = Sm/Eu) and Gd ₃₂ , Exhibiting Magnetocaloric Effects and Fluorescence Sensing for MnO ₄ [–] . Inorganic Chemistry, 2022, 61, 8861-8869.	1.9	11

#	Article	IF	CITATIONS
145	Water oxidation on Nâ€Doped TiO ₂ nanotube arrays. International Journal of Quantum Chemistry, 2012, 112, 2585-2590.	1.0	10
146	Experimental, DFT and quantum Monte Carlo studies of a series of peptide-based metal–organic frameworks: synthesis, structures and properties. Inorganic Chemistry Frontiers, 2014, 1, 526-533.	3.0	10
147	Structural, electrochemical and magnetic analyses of a new octanuclear Mn ^{III} ₂ Mn ^{II} ₆ cluster with linked-defect cubane topology. CrystEngComm, 2016, 18, 1329-1336.	1.3	10
148	Embedding 1D or 2D cobalt–carboxylate substrates in 3D coordination polymers exhibiting slow magnetic relaxation behaviors: crystal structures, high-field EPR, and magnetic studies. Dalton Transactions, 2017, 46, 4786-4795.	1.6	10
149	Fe(CN) ₅ @PIL-derived N-doped porous carbon with FeC _x N _y active sites as a robust electrocatalyst for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 97-105.	2.1	10
150	Micromechanical simulation of the pore size effect on the structural stability of brittle porous materials with bicontinuous morphology. Physical Chemistry Chemical Physics, 2019, 21, 12895-12904.	1.3	10
151	2D-3D transformation of palladium and gold nanoparticles on functionalized Mo2C by multiscale simulation. Applied Surface Science, 2019, 481, 554-563.	3.1	10
152	A generalized formula for two-dimensional diffusion of CO in graphene nanoslits with different Pt loadings. Green Energy and Environment, 2020, 5, 322-332.	4.7	10
153	A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2. Chinese Journal of Chemical Engineering, 2021, 31, 126-134.	1.7	10
154	Supporting a Cu@In ₂ O ₃ core–shell structure on N-doped graphitic carbon cuboctahedral cages for efficient photocatalytic homo-coupling of terminal alkynes. Journal of Materials Chemistry A, 2021, 9, 24909-24914.	5.2	10
155	Cooperatively interface role of surface atoms and aqueous media on single atom catalytic property for H2O2 synthesis. Journal of Colloid and Interface Science, 2022, 617, 752-763.	5.0	10
156	Ionothermal synthesis, fluorescence, and DFT calculation of three lanthanide-based metal-organic frameworks. Inorganic Chemistry Communication, 2015, 60, 4-7.	1.8	9
157	Magnetic Properties of a Singleâ€Molecule Lanthanide–Transitionâ€Metal Compound Containing 52 Gadolinium and 56 Nickel Atoms. Angewandte Chemie, 2016, 128, 4608-4612.	1.6	9
158	Enhanced Oxygen Reduction Activity on Carbon Supported Pd Nanoparticles Via SiO ₂ . ChemCatChem, 2019, 11, 1278-1285.	1.8	9
159	Collaboratively boosting charge transfer and CO ₂ chemisorption of SnO ₂ to selectively reduce CO ₂ to HCOOH. Chemical Communications, 2021, 57, 8636-8639.	2.2	9
160	Synergistic Effect of Coordination Fields and Hydrosolvents on the Single-Atom Catalytic Property in H ₂ O ₂ Synthesis: A Density Functional Theory Study. Journal of Physical Chemistry C, 2022, 126, 2349-2364.	1.5	9
161	Facile Synthesis of a Conjugated Macrocyclic Nanoring with Graphenic Hexabenzocoronene Sidewall as the Segment of [12,12] Carbon Nanotubes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	9
162	Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis. Chinese Journal of Catalysis, 2022, 43, 1860-1869.	6.9	9

#	Article	IF	CITATIONS
163	Two Self-Interpenetrating Copper(II)-Paddlewheel Metal–Organic Frameworks Constructed from Bifunctional Triazolate–Carboxylate Linkers. Crystal Growth and Design, 2018, 18, 6204-6210.	1.4	8
164	Three Cd(<scp>ii</scp>) coordination polymers constructed from a series of multidentate ligands derived from cyclotriphosphazene: synthesis, structures and luminescence properties. CrystEngComm, 2018, 20, 3535-3542.	1.3	8
165	Multiscale Simulation of Morphology Evolution of Supported Pt Nanoparticles via Interfacial Control. Langmuir, 2019, 35, 6393-6402.	1.6	8
166	Prolonging the lifetimes of plasmonic hot electrons for efficient hydrogen evolution by Ag@N,O-C interfaces with a unique ginkgo-leaf hierarchical structure. Journal of Materials Chemistry A, 2020, 8, 17449-17453.	5.2	8
167	N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies. Journal of Solid State Chemistry, 2012, 192, 284-288.	1.4	7
168	Additives initiate selective production of chemicals from biomass pyrolysis. Bioresource Technology, 2014, 156, 376-379.	4.8	7
169	Density functional theory study of <i>p</i> â€chloroaniline adsorption on Pd surfaces and clusters. International Journal of Quantum Chemistry, 2014, 114, 895-899.	1.0	6
170	The Mechanism of the Magnetodielectric Response in a Moleculeâ€Based Trinuclear Iron Cluster Material. Angewandte Chemie, 2020, 132, 14515-14519.	1.6	6
171	Role of the Auxiliary Ligand in the Spontaneous Resolution of Enantiomers in Three-Dimensional Coordination Polymers. Inorganic Chemistry, 2021, 60, 6981-6985.	1.9	6
172	Synthesis and Photophysical Properties of [3]Cyclo-1,8-pyrenes via [4 + 2] Cycloaddition Reaction. Journal of Organic Chemistry, 2021, 86, 7038-7045.	1.7	6
173	Synthesis, magnetism and quantum Monte Carlo studies of two Cu(II)-based ferromagnetic coordination polymers. Inorganic Chemistry Communication, 2012, 22, 18-21.	1.8	5
174	Hybrid nanotube–graphene junctions: spin degeneracy breaking and tunable electronic structure. Physical Chemistry Chemical Physics, 2013, 15, 20281.	1.3	5
175	Insights into Magnetic Interactions in a Monodisperse Gd ₁₂ Fe ₁₄ Metal Cluster. Angewandte Chemie, 2017, 129, 11633-11637.	1.6	5
176	Meso-scale simulation on mechanism of Na+-gated water-conducting nanochannels in zeolite NaA. Journal of Membrane Science, 2021, 635, 119462.	4.1	5
177	Carbonate–Water Supramolecule Trapped in Silver Nanoclusters Encapsulating Unprecedented Ag ₁₁ Kernel. CCS Chemistry, 2020, 2, 663-672.	4.6	5
178	Ionothermal synthesis, magnetic transformation and hydration–dehydration properties of Co(<scp>ii</scp>)-based coordination polymers. RSC Advances, 2016, 6, 71952-71957.	1.7	4
179	Thermally induced transformation of a Cu ₄ 1 ₄ -based cluster to a Cu ₂ 1 ₂ -based cluster under mild conditions. Dalton Transactions, 2021, 50, 9016-9020.	1.6	4
180	Synthesis, Magnetism, and Thermostability of a Series of Twoâ€Dimensional Lanthanide–Nickel Heterometallic Coordination Polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 817-820.	0.6	3

#	Article	IF	CITATIONS
181	Multiscale simulation on thermal stability of supported metal nanocatalysts. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1405.	6.2	3
182	A new family of decanuclear Ln ₇ Cr ₃ clusters exhibiting a magnetocaloric effect. RSC Advances, 2021, 11, 17346-17351.	1.7	3
183	Chapter 4. Computational catalysis in nanotubes. Catalysis, 0, , 109-160.	0.6	3
184	Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (â¡)-Based Metal-Organic Framework. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 242-248.	2.2	3
185	Facile one-pot synthesis of a novel all-carbon stair containing dimerized pentalene core from alkyne. Chinese Chemical Letters, 2022, 33, 2047-2051.	4.8	3
186	Effect of Orbital-Symmetry Matching in a Metal–Organic Framework for Highly Efficient C ₂ H ₂ /C ₂ H ₄ and C ₂ H ₂ /CO ₂ Separations. Inorganic Chemistry, 2022, 61, 10263-10266.	1.9	3
187	Lanthanide-based metal–peptide frameworks prepared by ionothermal method: Anion direct effect, DFT calculation and luminescence property. Inorganic Chemistry Communication, 2014, 42, 29-32.	1.8	2
188	Synthesis, characterization, and properties of four lanthanide-based coordination polymers with mixed ligands of 4-((4′-carboxybenzyl)oxy)benzoic acid and oxalic acid. Journal of Coordination Chemistry, 2017, 70, 2029-2039.	0.8	2
189	Syntheses, structures and magnetic properties of novel tetrameric Ln ₂ Mn ₂ and ring-like Ln ₄ Mn ₄ clusters. New Journal of Chemistry, 2020, 44, 9837-9843.	1.4	2
190	A Conjugated Molecular Crown Containing a Single Pyrenyl Unit: Synthesis, Characterization, and Photophysical Properties. Chinese Journal of Organic Chemistry, 2021, 41, 2401.	0.6	2
191	A novel LallI-based metal–organic framework (MOF) with a new topology: poly[diaquabis(μ5-2,5-dioxopiperazine-1,4-diacetato)(μ2-oxalato)dilanthanum(III)]. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 5-7.	0.4	1
192	The synergetic effect of an aqua ligand and metal site on the performance of single-atom catalysts in H2O2 synthesis: a density functional theory study. Physical Chemistry Chemical Physics, 2022, 24, 3905-3917.	1.3	1
193	Synthesis and Physical Properties of a Phenanthrene-Based [6,6] Hollow Bilayer Cylindrical Nanoring. Organic Letters, 2021, 23, 7976-7980.	2.4	0
194	Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al ₂ O ₃ /Au(111) Catalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1674-1680.	2.2	0