Paul Brumer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4675861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010, 463, 644-647.	13.7	1,392
2	Laser control of product quantum state populations in unimolecular reactions. Journal of Chemical Physics, 1986, 84, 4103-4104.	1.2	296
3	Local and normal modes: A classical perspective. Journal of Chemical Physics, 1980, 73, 5646-5658.	1.2	203
4	Coherent control of molecular dynamics. Reports on Progress in Physics, 2003, 66, 859-942.	8.1	195
5	Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19575-19578.	3.3	123
6	Coherent and incoherent laser control of photochemical reactions. International Reviews in Physical Chemistry, 1994, 13, 187-229.	0.9	111
7	One photon mode selective control of reactions by rapid or shaped laser pulses: An emperor without clothes?. Chemical Physics, 1989, 139, 221-228.	0.9	103
8	Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes. Physical Chemistry Chemical Physics, 2012, 14, 10094.	1.3	85
9	Creation and dynamics of molecular states prepared with coherent vs partially coherent pulsed light. Journal of Chemical Physics, 1991, 94, 5833-5843.	1.2	82
10	Physical Basis for Long-Lived Electronic Coherence in Photosynthetic Light-Harvesting Systems. Journal of Physical Chemistry Letters, 2011, 2, 2728-2732.	2.1	82
11	Controlled photon induced symmetry breaking: Chiral molecular products from achiral precursors. Journal of Chemical Physics, 1991, 95, 8658-8661.	1.2	79
12	Exponentiating trajectories and statistical behavior in collinear atom–diatom collisions. Journal of Chemical Physics, 1977, 67, 4898-4911.	1.2	74
13	Classical trajectory study of vibrationâ€rotation interaction in highly excited triatomic molecules. Journal of Chemical Physics, 1985, 83, 190-207.	1.2	69
14	Long-Lived Quasistationary Coherences in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>V</mml:mi>-type System Driven by Incoherent Light. Physical Review Letters, 2014, 113, 113601</mml:math 	2.9	66
15	Coherent radiative control of unimolecular reactions: Selective bond breaking with picosecond pulses. Journal of Chemical Physics, 1989, 90, 7132-7136.	1.2	64
16	Quantum-state-controlled channel branching in cold Ne(3P2)+Ar chemi-ionization. Nature Chemistry, 2018, 10, 1190-1195.	6.6	58
17	Classicalâ€quantum correspondence in the distribution dynamics of integrable systems. Journal of Chemical Physics, 1985, 82, 2330-2340.	1.2	57
18	Threeâ€dimensional quantumâ€mechanical computations of the control of the H+ODâ†DOH→D+OH reaction. Journal of Chemical Physics, 1993, 98, 201-205.	1.2	57

#	Article	IF	CITATIONS
19	Coherent Control of Collisional Events: Bimolecular Reactive Scattering. Physical Review Letters, 1996, 77, 2574-2576.	2.9	54
20	Shedding (Incoherent) Light on Quantum Effects in Light-Induced Biological Processes. Journal of Physical Chemistry Letters, 2018, 9, 2946-2955.	2.1	54
21	Twoâ€pulse coherent control of electronic states in the photodissociation of IBr: Theory and proposed experiment. Journal of Chemical Physics, 1990, 93, 2493-2498.	1.2	52
22	Theory of enantiomeric control in dimethylallene using achiral light. Journal of Chemical Physics, 2001, 115, 5349-5352.	1.2	51
23	Quantum-classical correspondence via Liouville dynamics. I. Integrable systems and the chaotic spectral decomposition. Physical Review A, 1997, 55, 27-42.	1.0	50
24	Laser control of unimolecular decay yields in the presence of collisions. Journal of Chemical Physics, 1989, 90, 6179-6186.	1.2	49
25	Semiclassical initial value approach for chaotic long-lived dynamics. Journal of Chemical Physics, 1998, 109, 2999-3003.	1.2	49
26	Intramolecular Energy Transfer: Theories for the Onset of Statistical Behavior. Advances in Chemical Physics, 2007, , 201-238.	0.3	48
27	Semiclassical collision theory in the initial value representation: Efficient numerics and reactive formalism. Journal of Chemical Physics, 1992, 96, 5969-5982.	1.2	46
28	Mechanisms in Adaptive Feedback Control: Photoisomerization in a Liquid. Physical Review Letters, 2005, 95, 168305.	2.9	45
29	Communication: Conditions for one-photon coherent phase control in isolated and open quantum systems. Journal of Chemical Physics, 2010, 133, 151101.	1.2	45
30	Intramolecular dynamics and nonlinear mechanics of model OCS. Journal of Chemical Physics, 1982, 77, 4208-4221.	1.2	44
31	Coherent control of bimolecular chemical reactions. Journal of Chemical Physics, 1990, 92, 1126-1131.	1.2	44
32	Quantum-classical correspondence via Liouville dynamics. II. Correspondence for chaotic Hamiltonian systems. Physical Review A, 1997, 55, 43-61.	1.0	44
33	Incoherent excitation of thermally equilibrated open quantum systems. Physical Review A, 2013, 87, .	1.0	44
34	Overlapping resonances in the coherent control of radiationless transitions: Internal conversion in pyrazine. Journal of Chemical Physics, 2005, 123, 064313.	1.2	43
35	Power enhancement of heat engines via correlated thermalization in a three-level $\hat{a} \in \hat{c}$ working fluid $\hat{a} \in \hat{c}$. Scientific Reports, 2015, 5, 14413.	1.6	43
36	Partial secular Bloch-Redfield master equation for incoherent excitation of multilevel quantum systems. Journal of Chemical Physics, 2015, 142, 104107.	1.2	41

#	Article	IF	CITATIONS
37	Multiproduct coherent control of photodissociation via twoâ€photon versus twoâ€photon interference. Journal of Chemical Physics, 1993, 98, 6843-6852.	1.2	39
38	Characteristics of power spectra for regular and chaotic systems. Journal of Chemical Physics, 1988, 88, 1481-1496.	1.2	38
39	Semiclassical initial value theory for dissociation dynamics. Journal of Chemical Physics, 1997, 107, 791-803.	1.2	38
40	Coherent Control of Resonance-Mediated Reactions:F+HD. Physical Review Letters, 2004, 92, 133204.	2.9	37
41	Chaos and Reaction Dynamics. Advances in Chemical Physics, 2007, , 365-439.	0.3	35
42	Quantum dynamics of incoherently driven V-type systems: Analytic solutions beyond the secular approximation. Journal of Chemical Physics, 2016, 144, 244108.	1.2	35
43	Exponentiating trajectories and statistical behavior: Three dimensional K+NaCl and H+ICl. Journal of Chemical Physics, 1979, 71, 2693-2702.	1.2	34
44	Coherent radiative control of molecular photodissociation via resonant two-photon versus two-photon interference. Chemical Physics Letters, 1992, 198, 498-504.	1.2	34
45	Quantum coherence effects in natural light-induced processes: cis–trans photoisomerization of model retinal under incoherent excitation. Physical Chemistry Chemical Physics, 2015, 17, 30904-30913.	1.3	34
46	Interference control without laser coherence: Molecular photodissociation. Journal of Chemical Physics, 1995, 102, 5683-5694.	1.2	33
47	Excitation of Biomolecules by Coherent vs. Incoherent Light: Model Rhodopsin Photoisomerization. Procedia Chemistry, 2011, 3, 122-131.	0.7	33
48	Geometric effects on complex formation in collinear atom–diatom collisions. Journal of Chemical Physics, 1979, 70, 5527-5533.	1.2	32
49	Coherent dynamics of V-type systems driven by time-dependent incoherent radiation. Journal of Chemical Physics, 2016, 145, 244313.	1.2	30
50	Non-equilibrium stationary coherences in photosynthetic energy transfer under weak-field incoherent illumination. Journal of Chemical Physics, 2018, 148, 124114.	1.2	30
51	Classical Analog of Pure-State Quantum Dynamics. Physical Review Letters, 1985, 54, 8-10.	2.9	29
52	Enantiomeric purification of nonpolarized racemic mixtures using coherent light. Journal of Chemical Physics, 2003, 119, 7237-7246.	1.2	29
53	Secular versus nonsecular Redfield dynamics and Fano coherences in incoherent excitation: An experimental proposal. Physical Review A, 2018, 97, .	1.0	29
54	Observation of persistent orientation of chiral molecules by a laser field with twisted polarization. Physical Review A, 2020, 101, .	1.0	29

#	Article	IF	CITATIONS
55	Total Nâ€channel control in the weak field domain. Journal of Chemical Physics, 1992, 97, 6259-6261.	1.2	28
56	Laboratory conditions in the coherent control of reactive scattering. Faraday Discussions, 1999, 113, 291-302.	1.6	28
57	The equivalence of unimolecular decay product yields in pulsed and cw laser excitation. Journal of Chemical Physics, 1986, 84, 540-541.	1.2	27
58	Coherent control of the CH2Br+lâ†CH2Brl→CH2I+Br branching photodissociation reaction. Journal of Chemical Physics, 2002, 116, 5584-5592.	1.2	27
59	Communication: One-photon phase control of <i>cis-trans</i> isomerization in retinal. Journal of Chemical Physics, 2013, 138, 071104.	1.2	27
60	Theoretical study of the S1↔SO spectroscopy of anthracene. Journal of Chemical Physics, 1994, 101, 10366-10381.	1.2	26
61	Coherent control of quantum chaotic diffusion: Diatomic molecules in a pulsed microwave field. Journal of Chemical Physics, 2001, 115, 3590-3597.	1.2	26
62	Open system perspective on incoherent excitation of light-harvesting systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 184003.	0.6	25
63	Exit channel corrected phase space theory for product distributions in unimolecular decay. Journal of Chemical Physics, 1985, 82, 595-597.	1.2	24
64	Controlled quantum-state transfer in a spin chain. Physical Review A, 2007, 75, .	1.0	24
65	Mechanisms in environmentally assisted one-photon phase control. Journal of Chemical Physics, 2013, 139, 164123.	1.2	24
66	Coherent one-photon phase control in closed and open quantum systems: A general master equation approach. Faraday Discussions, 2013, 163, 485.	1.6	23
67	Intramolecular vibrational redistribution in alkylbenzenes. I. Normal modes and their energy distribution. Journal of Chemical Physics, 1991, 94, 2848-2861.	1.2	22
68	Laser-induced persistent orientation of chiral molecules. Physical Review A, 2019, 100, .	1.0	22
69	Theoretical Aspects of Photodissociation and Intramolecular Dynamics. Advances in Chemical Physics, 2007, , 371-402.	0.3	21
70	Transform-limited-pulse representation of excitation with natural incoherent light. Journal of Chemical Physics, 2016, 144, 044103.	1.2	21
71	Complete Quantum Coherent Control of Ultracold Molecular Collisions. Physical Review Letters, 2021, 126, 153403.	2.9	21
72	Pump–dump coherent control with partially coherent laser pulses. Journal of Chemical Physics, 1996, 104, 607-615.	1.2	20

#	Article	IF	CITATIONS
73	Two-pulse coherent control of electronic branching in Li2 photodissociation. Journal of Chemical Physics, 1998, 108, 3585-3590.	1.2	20
74	Coherent enhancement and suppression of reactive scattering and tunneling. Journal of Chemical Physics, 1999, 110, 9-11.	1.2	20
75	Entanglement-assisted coherent control in nonreactive diatom–diatom scattering. Journal of Chemical Physics, 2003, 118, 2626.	1.2	20
76	Time delay for bimolecular collisions: Utility of the spectral theorem in the classical limit. Journal of Chemical Physics, 1980, 72, 386-394.	1.2	19
77	Intramolecular relaxation inN=2 Hamiltonian systems: The role of theKentropy. Journal of Chemical Physics, 1983, 78, 2682-2690.	1.2	19
78	Intramolecular vibrational redistribution in alkylbenzenes. II. Spectroscopy and dynamics. Journal of Chemical Physics, 1991, 94, 2862-2872.	1.2	19
79	Theory of resonant twoâ€photon dissociation of Na2. Journal of Chemical Physics, 1993, 98, 8647-8659.	1.2	19
80	A minimally dynamic approach to unimolecular decay: CCH and coupled Morse dynamics. Journal of Chemical Physics, 1985, 82, 1937-1946.	1.2	18
81	Coherent control of atom–diatom reactive scattering: isotopic variants of H+H2 in three dimensions. Chemical Physics, 2001, 267, 81-92.	0.9	17
82	Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions. Physical Review Letters, 2016, 117, 143201.	2.9	17
83	Coherent control of bimolecular collisions: Collinear reactive scattering. Journal of Chemical Physics, 1996, 105, 9162-9166.	1.2	16
84	Chiral Molecules with Achiral Excited States:Â A Computational Study of 1,3-Dimethylallene. Journal of Physical Chemistry A, 2001, 105, 9509-9517.	1.1	16
85	Direct experimental determination of spectral densities of molecular complexes. Journal of Chemical Physics, 2014, 141, 174102.	1.2	16
86	Transient quantum coherent response to a partially coherent radiation field. Journal of Chemical Physics, 2014, 140, 074104.	1.2	16
87	Light-induced processes in nature: Coherences in the establishment of the nonequilibrium steady state in model retinal isomerization. Journal of Chemical Physics, 2019, 150, 184304.	1.2	16
88	Quantum limitations on dynamics and control. Journal of Chemical Physics, 1995, 103, 487-488.	1.2	15
89	Quantum driven dissipative parametric oscillator in a blackbody radiation field. Journal of Mathematical Physics, 2014, 55, .	0.5	15
90	Classical Approach to Multichromophoric Resonance Energy Transfer. Physical Review Letters, 2015, 115, 110402	2.9	15

#	Article	IF	CITATIONS
91	Realistic vs sudden turn-on of natural incoherent light: Coherences and dynamics in molecular excitation and internal conversion. Journal of Chemical Physics, 2015, 143, 244313.	1.2	15
92	Dynamical instability and external perturbations: Bimolecular collisions in laser fields. Journal of Chemical Physics, 1982, 77, 854-859.	1.2	14
93	Identical collision partners in the coherent control of bimolecular reactions. Journal of Chemical Physics, 2000, 113, 2053-2055.	1.2	13
94	Nature of Quantum States Created by One Photon Absorption: Pulsed Coherent vs Pulsed Incoherent Light. Journal of Physical Chemistry A, 2013, 117, 8199-8204.	1.1	13
95	Theory of perturbative pulse train based coherent control. Journal of Chemical Physics, 2014, 140, 124307.	1.2	13
96	Quantumness in light harvesting is determined by vibrational dynamics. Journal of Chemical Physics, 2018, 149, 234102.	1.2	13
97	An efficient approach to the quantum dynamics and rates of processes induced by natural incoherent light. Journal of Chemical Physics, 2018, 149, 114104.	1.2	13
98	Relaxation rates in chaotic and quasiperiodic systems. Journal of Chemical Physics, 1987, 87, 6437-6448.	1.2	12
99	A direct approach to one photon interference contributions in the coherent control of photodissociation. Journal of Chemical Physics, 2001, 114, 10321-10331.	1.2	12
100	Electronic energy transfer in model photosynthetic systems: Markovian vs. non-Markovian dynamics. Faraday Discussions, 2011, 153, 41.	1.6	11
101	Classical coherent two-dimensional vibrational spectroscopy. Journal of Chemical Physics, 2018, 148, 064101.	1.2	11
102	Steady-state Fano coherences in a V-type system driven by polarized incoherent light. Physical Review Research, 2021, 3, .	1.3	11
103	Efficient computational approach to the non-Markovian second order quantum master equation: electronic energy transfer in model photosynthetic systems. Molecular Physics, 2012, 110, 1815-1828.	0.8	10
104	Ultrafast and Efficient Control of Coherent Electron Dynamics via SPODS. Advances in Chemical Physics, 0, , 235-282.	0.3	10
105	Influence of non-Markovian dynamics in equilibrium uncertainty-relations. Journal of Chemical Physics, 2019, 150, 034105.	1.2	10
106	Energy transfer under natural incoherent light: Effects of asymmetry on efficiency. Journal of Chemical Physics, 2020, 153, 114102.	1.2	10
107	the differential cross sections for <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">F<mml:mo>+</mml:mo><mml:mo>Â</mml:mo><ml:msub><mml:mi mathvariant="normal">H<mml:mn>2</mml:mn> and <mml:math< td=""><td>1.0</td><td>10</td></mml:math<></mml:mi </ml:msub></mml:mi </mmi:math 	1.0	10
108	zmlns:mml="http://www.w3.org/1998/Math/Math/Mt">cmmhmi The Conservation of the Correlation Length of Quantum and Classical Chaotic States. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1988, 92, 212-216.	0.9	9

#	Article	IF	CITATIONS
109	Quantum coherence in the control of molecular processes. Laser and Particle Beams, 1998, 16, 599-603.	0.4	9
110	Classical Wigner phase space approximation to cumulative matrix elements in coherent control. Journal of Chemical Physics, 2003, 119, 3606-3618.	1.2	9
111	Coherent Control of Penning and Associative Ionization: Insights from Symmetries. Physical Review Letters, 2018, 121, 163405.	2.9	9
112	LH1–RC light-harvesting photocycle under realistic light–matter conditions. Journal of Chemical Physics, 2020, 152, 154101.	1.2	9
113	Fully differentiable optimization protocols for non-equilibrium steady states. New Journal of Physics, 2021, 23, 123006.	1.2	9
114	Statistical behavior and the detailed dynamics of collinear F+H2 trajectories. Journal of Chemical Physics, 1979, 71, 3895-3896.	1.2	8
115	Multiple time scale open systems: Reaction rates and quantum coherence in model retinal photoisomerization under incoherent excitation. Journal of Chemical Physics, 2019, 151, 014104.	1.2	8
116	Nonstatistical unimolecular decay in quasiperiodic systems. Journal of Chemical Physics, 1989, 90, 96-104.	1.2	7
117	Extreme Parametric Sensitivity in the Steady-State Photoisomerization of Two-Dimensional Model Rhodopsin. Journal of Physical Chemistry Letters, 2021, 12, 3618-3624.	2.1	7
118	Noise-induced coherence in molecular processes. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 223001.	0.6	7
119	Weak-field optimal control of Na2 photodissociation. Journal of Chemical Physics, 1998, 109, 8993-9001.	1.2	6
120	Quantum versus classical decoherence dynamics. Journal of Modern Optics, 2003, 50, 2411-2422.	0.6	6
121	Laser Control of Ultrafast Molecular Rotation. Advances in Chemical Physics, 0, , 395-412.	0.3	6
122	Interfering resonance as an underlying mechanism in the adaptive feedback control of radiationless transitions: Retinal isomerization. Journal of Chemical Physics, 2017, 147, 114107.	1.2	6
123	Optimized Imploding Waves in the Coherent Control of Bimolecular Processes:Â Atomâ^'Rotor Scattering. Journal of Physical Chemistry A, 1999, 103, 10333-10342.	1.1	5
124	Controlling Quantum Dynamics with Assisted Adiabatic Processes. Advances in Chemical Physics, 2016, , 51-136.	0.3	5
125	Longâ€lived intermediates in the Borne–Bunker systems. Journal of Chemical Physics, 1978, 69, 1792-1794	1.2	4
126	Extracting signatures of quantum chaos from the time resolved fluorescence of isolated molecules. Journal of Chemical Physics, 1997, 107, 4893-4905.	1.2	4

Paul Brumer

#	Article	IF	CITATIONS
127	Generic Construction of Kraus Operators: <i>d</i> â€level Systems in a Thermal Bosonic Bath. Israel Journal of Chemistry, 2012, 52, 461-466.	1.0	4
128	Laser-induced molecular alignment in the presence of chaotic rotational dynamics. Journal of Chemical Physics, 2017, 146, 124313.	1.2	4
129	Equilibrium stationary coherence in the multilevel spin-boson model. Physical Review A, 2020, 102, .	1.0	4
130	Electronic absorption spectroscopy of diatomics on a dynamic surface: IBr on MgO(001). Journal of Chemical Physics, 1996, 105, 3479-3485.	1.2	3
131	Certifying the quantumness of a generalized coherent control scenario. Journal of Chemical Physics, 2014, 141, 204311.	1.2	3
132	Pulsed two-photon coherent control of channelrhodopsin-2 photocurrent in live brain cells. Journal of Chemical Physics, 2020, 153, 034303.	1.2	3
133	Generalized Adiabatic Theorems: Quantum Systems Driven by Modulated Time-Varying Fields. PRX Quantum, 2021, 2, .	3.5	3
134	Coherent multichannel optical theorem: Quantum control of the total scattering cross section. Physical Review A, 2022, 105, .	1.0	3
135	Steady State Photoisomerization Quantum Yield of Model Rhodopsin: Insights from Wavepacket Dynamics?. Journal of Physical Chemistry Letters, 0, , 4963-4970.	2.1	3
136	Continuum vs bound state statisticality. Journal of Chemical Physics, 1984, 80, 4567-4568.	1.2	2
137	Relative Laser Phase in the Coherent Control and Interference Control of Photodissociation Branching Ratios. Israel Journal of Chemistry, 1994, 34, 137-145.	1.0	2
138	Universality in exact quantum state population dynamics and control. Physical Review A, 2010, 82, .	1.0	2
139	An efficient implementation of the localized operator partitioning method for electronic energy transfer. Journal of Chemical Physics, 2015, 142, 084114.	1.2	2
140	Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism. Journal of Chemical Physics, 2016, 145, 244111.	1.2	2
141	From Coherent to Incoherent Dynamical Control of Open Quantum Systems. Advances in Chemical Physics, 0, , 137-218.	0.3	2
142	Determining the number of integrals of motion by an adapted correlation dimension method. Physical Review E, 2019, 99, 032222.	0.8	2
143	Multi-objective optimization for retinal photoisomerization models with respect to experimental observables. Journal of Chemical Physics, 2021, 155, 234109.	1.2	2
144	An Analysis of Two Liquidâ€State Adaptive Feedback Experiments. Israel Journal of Chemistry, 2007, 47, 111-114.	1.0	1

#	Article	IF	CITATIONS
145	Piecewise Adiabatic Passage in Polarization Optics: an Achromatic Polarization Rotator. Advances in Chemical Physics, 2016, , 219-234.	0.3	1
146	Effects of Electromagnetic Fields on Molecular Scattering. Advances in Chemical Physics, 0, , 313-348.	0.3	1
147	An efficient spectral method for numerical time-dependent perturbation theory. Journal of Chemical Physics, 2019, 151, 144106.	1.2	1
148	Computational approaches to efficient generation of the stationary state for incoherent light excitation. Journal of Chemical Physics, 2021, 154, 124126.	1.2	1
149	Near-threshold scaling of resonant inelastic collisions at ultralow temperatures. Physical Review A, 2022, 105, .	1.0	1
150	Comment on â€~â€~Nonâ€Rice–Ramsperger–Kassel–Marcus dynamics and the statistics of reaction rates ir chaotic systems'' [J. Chem. Phys.98, 7898 (1993)]. Journal of Chemical Physics, 1994, 100, 1773-1774.	¹ 1.2	0
151	Quantum control of dynamics. , 1997, , .		0
152	Quantum Reflection of Ultracold Atoms in Magnetic Traps. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1999, 54, 167-170.	0.7	0
153	Coherent Control Theory of off Resonance Refractive Index of Medium with a Gaussian Pulse of Coherent Light. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1999, 54, 171-176.	0.7	0
154	State densities and time delay in molecular collisions. International Journal of Quantum Chemistry, 2009, 20, 583-594.	1.0	0
155	Toward Coherent Control Around the Quantum-Classical Boundary. Advances in Chemical Physics, 2016, , 283-312.	0.3	0
156	Photoinduced Bond Cleavage as a Probe of Mode Specificity and Intramolecular Dynamics in Rovibrationally Excited Triatomic to 10 Atom Molecules. Advances in Chemical Physics, 0, , 23-50.	0.3	0
157	Dynamics of Photochemical Reactions of Organic Carbonyls and their Clusters. Advances in Chemical Physics, 2016, , 1-22.	0.3	0
158	Quantum Dynamics by Partitioning Technique. Advances in Chemical Physics, 2016, , 349-394.	0.3	0