
Richard E Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4675648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visuoâ€spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. Genes, Brain and Behavior, 2022, 21, e12794.	2.2	21
2	Age-related deficits in working memory in 5xFAD mice in the Hebb-Williams maze. Behavioural Brain Research, 2022, 424, 113806.	2.2	7
3	Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress?. The EuroBiotech Journal, 2022, 6, 61-88.	1.0	1
4	Donald O. Hebb. , 2022, , 2117-2120.		0
5	A Signal Detection Analysis of Olfactory Learning in 12-Month-Old 5xFAD Mice. Journal of Alzheimer's Disease, 2022, , 1-8.	2.6	1
6	The effect of background strain on the behavioral phenotypes of the <scp>MDGA2</scp> ^{+/â^'} mouse model of autism spectrum disorder. Genes, Brain and Behavior, 2021, 20, e12696.	2.2	11
7	Age related weight loss in female 5xFAD mice from 3 to 12 months of age. Behavioural Brain Research, 2021, 406, 113214.	2.2	19
8	Neuroscience education and research in Cameroon: Current status and future direction. IBRO Neuroscience Reports, 2021, 10, 216-224.	1.6	0
9	The Hebb Synapse Before Hebb: Theories of Synaptic Function in Learning and Memory Before Hebb (1949), With a Discussion of the Long-Lost Synaptic Theory of William McDougall. Frontiers in Behavioral Neuroscience, 2021, 15, 732195.	2.0	8
10	Ageâ€related deterioration of motor function in male and female 5xFAD mice from 3 to 16 months of age. Genes, Brain and Behavior, 2020, 19, e12538.	2.2	58
11	Whisker exploration behaviours in the 5xFAD mouse are affected by sex and retinal degeneration. Genes, Brain and Behavior, 2020, 19, e12532.	2.2	14
12	Recommendations for measuring whisker movements and locomotion in mice with sensory, motor and cognitive deficits. Journal of Neuroscience Methods, 2020, 331, 108532.	2.5	9
13	Intact olfactory memory in the 5xFAD mouse model of Alzheimer's disease from 3 to 15 months of age. Behavioural Brain Research, 2020, 393, 112731.	2.2	19
14	Polysialylated – neural cell adhesion molecule (PSA-NCAM) promotes recovery of vision after the critical period. Molecular and Cellular Neurosciences, 2020, 107, 103527.	2.2	3
15	Donald O. Hebb and the Organization of Behavior: 17 years in the writing. Molecular Brain, 2020, 13, 55.	2.6	26
16	Why Study the History of Neuroscience?. Frontiers in Behavioral Neuroscience, 2019, 13, 82.	2.0	8
17	Effects of the Novel IDO Inhibitor DWG-1036 on the Behavior of Male and Female 3xTg-AD Mice. Frontiers in Pharmacology, 2019, 10, 1044.	3.5	33
18	Age and sex differences in motivation and spatial working memory in 3xTg-AD mice in the Hebb–Williams maze. Behavioural Brain Research, 2019, 370, 111937.	2.2	16

#	Article	IF	CITATIONS
19	Cognitive Decline, Cerebral-Spleen Tryptophan Metabolism, Oxidative Stress, Cytokine Production, and Regulation of the Txnip Gene in a Triple Transgenic Mouse Model of Alzheimer Disease. American Journal of Pathology, 2019, 189, 1435-1450.	3.8	21
20	Interval timing is disrupted in female 5xFAD mice: An indication of altered memory processes. Journal of Neuroscience Research, 2019, 97, 817-827.	2.9	16
21	Motor deficits in 16-month-old male and female 3xTg-AD mice. Behavioural Brain Research, 2019, 356, 305-313.	2.2	32
22	Sex differences in the timing behavior performance of 3xTg-AD and wild-type mice in the peak interval procedure. Behavioural Brain Research, 2019, 360, 235-243.	2.2	21
23	Pathfinder: open source software for analyzing spatial navigation search strategies. F1000Research, 2019, 8, 1521.	1.6	21
24	Age-Related Changes in the Spatial Frequency Threshold of Male and Female 3xTg-AD Mice Using OptoMotry. Journal of Alzheimer's Disease, 2018, 62, 591-596.	2.6	12
25	The importance of behavioural bioassays in neuroscience. Journal of Neuroscience Methods, 2018, 300, 68-76.	2.5	32
26	DHA, EPA and their combination at various ratios differently modulated Aβ25-35-induced neurotoxicity in SH-SY5Y cells. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 136, 85-94.	2.2	27
27	The Synaptic Theory of Memory: A Historical Survey and Reconciliation of Recent Opposition. Frontiers in Systems Neuroscience, 2018, 12, 52.	2.5	69
28	Hippocampal Mechanisms Underlying Impairment in Spatial Learning Long After Establishment of Noise-Induced Hearing Loss in CBA Mice. Frontiers in Systems Neuroscience, 2018, 12, 35.	2.5	38
29	Sex Differences in Healthspan Predict Lifespan in the 3xTg-AD Mouse Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 172.	3.4	46
30	Neuroscience without borders: Preserving the history of neuroscience. European Journal of Neuroscience, 2018, 48, 2099-2109.	2.6	5
31	Genotype and Sex Differences in Longevity in Transgenic Mouse Models of Alzheimer's Disease. , 2018, , 563-576.		2
32	Locomotor activity, emotionality, sensori-motor gating, learning and memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Brain Research Bulletin, 2018, 140, 347-354.	3.0	19
33	The 100th Anniversary of the Russian Pavlov Physiological Society. Physiology, 2017, 32, 402-407.	3.1	2
34	An Extract from Shrimp Processing By-Products Protects SH-SY5Y Cells from Neurotoxicity Induced by Aβ25–35. Marine Drugs, 2017, 15, 83.	4.6	18
35	Revisiting Hebb: The organization of behavior. , 2017, , 69-93.		4

#	Article	IF	CITATIONS
37	Hebb and Cattell: The Genesis of the Theory of Fluid and Crystallized Intelligence. Frontiers in Human Neuroscience, 2016, 10, 606.	2.0	35
38	Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neuroscience and Biobehavioral Reviews, 2016, 65, 292-312.	6.1	63
39	Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Research Bulletin, 2016, 125, 79-91.	3.0	43
40	Sex and Genotype Differences in Odor Detection in the 3×Tg-AD and 5XFAD Mouse Models of Alzheimer's Disease at 6 Months of Age. Chemical Senses, 2016, 41, 433-440.	2.0	41
41	P4â€043: Behavioural Phenotyping of Alzheimer's Disease Model Mice: Understanding Mouse Models of Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P1031.	0.8	0
42	Effect of NCAM on aged-related deterioration in vision. Neurobiology of Aging, 2016, 41, 93-106.	3.1	9
43	Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies. Expert Opinion on Drug Discovery, 2016, 11, 11-25.	5.0	16
44	Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer's Disease: What are the Roadblocks and How Can They Be Overcome?1. Journal of Alzheimer's Disease, 2015, 47, 815-843.	2.6	84
45	Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer's disease. Behavioural Brain Research, 2015, 289, 29-38.	2.2	155
46	The problem of genotype and sex differences in life expectancy in transgenic AD mice. Neuroscience and Biobehavioral Reviews, 2015, 57, 238-251.	6.1	68
47	Analysis of motor function in 6-month-old male and female 3xTg-AD mice. Behavioural Brain Research, 2015, 281, 16-23.	2.2	56
48	Reference and working memory deficits in the 3xTg-AD mouse between 2 and 15-months of age: A cross-sectional study. Behavioural Brain Research, 2015, 278, 496-505.	2.2	71
49	Olfactory delayed matching to sample performance in mice: Sex differences in the 5XFAD mouse model of Alzheimer's disease. Behavioural Brain Research, 2014, 270, 165-170.	2.2	29
50	Optimization of apparatus design and behavioral measures for the assessment of visuo-spatial learning and memory of mice on the Barnes maze. Learning and Memory, 2013, 20, 85-96.	1.3	57
51	What are We Measuring When We Test Strain Differences in Anxiety in Mice?. Behavior Genetics, 2013, 43, 34-50.	2.1	118
52	Maternal genotype influences behavioral development of 3×Tg-AD mouse pups. Behavioural Brain Research, 2013, 252, 40-48.	2.2	21
53	Prevention of vision loss protects against age-related impairment in learning and memory performance in DBA/2J mice. Frontiers in Aging Neuroscience, 2013, 5, 52.	3.4	19
54	Age-related changes in visual acuity, learning and memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Behavioural Brain Research, 2012, 231, 75-85.	2.2	34

#	Article	IF	CITATIONS
55	The effect of chlordiazepoxide on measures of activity and anxiety in Swiss-Webster mice in the triple test. Neuropharmacology, 2012, 63, 883-889.	4.1	8
56	A Neurobehavioral Analysis of the Prevention of Visual Impairment in the DBA/2J Mouse Model of Glaucoma. , 2012, 53, 5956.		33
57	The effects of apparatus design and test procedure on learning and memory performance of C57BL/6J mice on the Barnes maze. Journal of Neuroscience Methods, 2012, 203, 315-324.	2.5	60
58	Learning, memory and search strategies of inbred mouse strains with different visual abilities in the Barnes maze. Behavioural Brain Research, 2011, 216, 531-542.	2.2	64
59	Are Sema5a mutant mice a good model of autism? A behavioral analysis of sensory systems, emotionality and cognition. Behavioural Brain Research, 2011, 225, 142-150.	2.2	24
60	Separation-Induced Depression in the Mouse. Neuromethods, 2011, , 235-250.	0.3	1
61	Measuring anxiety- and locomotion-related behaviours in mice: a new way of using old tests. Psychopharmacology, 2010, 211, 99-112.	3.1	70
62	Insights into the life and work of Sir Charles Sherrington. Nature Reviews Neuroscience, 2010, 11, 429-436.	10.2	30
63	How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. Advances in the Study of Behavior, 2010, , 255-366.	1.6	60
64	The lonely mouse: Verification of a separation-induced model of depression in female mice. Behavioural Brain Research, 2010, 207, 196-207.	2.2	131
65	Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer's disease. Behavioural Brain Research, 2009, 201, 120-127.	2.2	109
66	Attenuation of maternal behavior in virgin CD-1 mice by methylphenidate hydrochloride. Physiology and Behavior, 2008, 95, 395-399.	2.1	9
67	The influence of visual ability on learning and memory performance in 13 strains of mice. Learning and Memory, 2007, 14, 134-144.	1.3	157
68	Behavioural phenotyping of transgenic mice Canadian Journal of Experimental Psychology, 2007, 61, 328-344.	0.8	18
69	Comparison of medial preoptic, amygdala, and nucleus accumbens lesions on parental behavior in California mice (Peromyscus californicus). Physiology and Behavior, 2007, 92, 617-628.	2.1	77
70	Age-related changes in visual acuity, learning and memory in C57BL/6J and DBA/2J mice. Neurobiology of Aging, 2007, 28, 1577-1593.	3.1	90
71	Effect of resource availability on biparental care, and offspring neural and behavioral development in the California mouse (Peromyscus californicus). European Journal of Neuroscience, 2007, 25, 567-575.	2.6	39
72	The life and work of Donald Olding Hebb. Acta Neurologica Taiwanica, 2006, 15, 127-42.	0.3	5

#	Article	IF	CITATIONS
73	Prenatal exposure to methylphenidate hydrochloride decreases anxiety and increases exploration in mice. Pharmacology Biochemistry and Behavior, 2004, 77, 491-500.	2.9	28
74	Sex differences in ultrasonic vocalizations and coordinated movement in the California mouse (Peromyscus californicus). Behavioural Processes, 2004, 65, 155-162.	1.1	25
75	Effect of neonatal handling and paternal care on offspring cognitive development in the monogamous California mouse (Peromyscus californicus). Hormones and Behavior, 2004, 46, 30-38.	2.1	94
76	Long-term methylphenidate treatment down-regulates c-fos in the striatum of male CD-1 mice. NeuroReport, 2004, 15, 1045-1048.	1.2	22
77	The legacy of Donald O. Hebb: more than the Hebb Synapse. Nature Reviews Neuroscience, 2003, 4, 1013-1019.	10.2	111
78	MHC-congenic mice (C57BL/6J and B6-H-2K) show differences in speed but not accuracy in learning the Hebb–Williams Maze. Behavioural Brain Research, 2003, 144, 187-197.	2.2	15
79	Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats. NeuroReport, 2003, 14, 769-772.	1.2	44
80	Medial preoptic lesions disrupt parental behavior in both male and female California mice (Peromyscus californicus) Behavioral Neuroscience, 2002, 116, 968-975.	1.2	77
81	Nest building in nulligravid, primigravid and primiparous C57BL/6J and DBA/2J mice (Mus musculus). Physiology and Behavior, 2002, 75, 551-555.	2.1	48
82	The presence of the male facilitates parturition in California mice (Peromyscus californicus). Canadian Journal of Zoology, 2002, 80, 926-933.	1.0	19
83	Ultrasonic vocalizations and ontogenetic development in California mice (Peromyscus californicus). Behavioural Processes, 2002, 59, 147-156.	1.1	29
84	The importance of paternal care on pup survival and pup growth in Peromyscus californicus when required to work for food. Behavioural Processes, 2002, 60, 41-52.	1.1	54
85	Age-related distribution of c-fos expression in the striatum of CD-1 mice after acute methylphenidate administration. Developmental Brain Research, 2002, 135, 71-77.	1.7	37
86	FOS and FOSB expression in the medial preoptic nucleus pars compacta of maternally active C57BL/6J and DBA/2J mice. Brain Research, 2002, 952, 170-175.	2.2	15
87	Subchronic methylphenidate administration has no effect on locomotion, emotional behavior, or water maze learning in prepubertal mice. Developmental Psychobiology, 2002, 41, 123-132.	1.6	29
88	Effects of chronic and acute methylphenidate hydrochloride (ritalin) administration on locomotor activity, ultrasonic vocalizations, and neuromotor development in 3- to 11-day-old CD-1 mouse pups. Developmental Psychobiology, 2001, 39, 216-228.	1.6	19
89	Of mice and men: Virtual Hebb-Williams mazes permit comparison of spatial learning across species. Cognitive, Affective and Behavioral Neuroscience, 2001, 1, 83-89.	2.0	51
90	Maternal behavior, paternal behavior, and pup survival in CD-1 albino mice (Mus musculus) in three different housing conditions Journal of Comparative Psychology (Washington, D C: 1983), 2000, 114, 183-192.	0.5	30

#	Article	IF	CITATIONS
91	Effects of Subchronic Methylphenidate Hydrochloride Administration on the Locomotor and Exploratory Behavior of Prepubertal Mice. Journal of Child and Adolescent Psychopharmacology, 2000, 10, 277-286.	1.3	42
92	Differences in Measures of Exploration and Fear in MHC-Congenic C57BL/6J and B6-H-2K Mice. Behavior Genetics, 1999, 29, 263-271.	2.1	164
93	Dopaminergic modulation of rat pup ultrasonic vocalizations. European Journal of Pharmacology, 1999, 382, 53-67.	3.5	39
94	Maternal Behavior in Female C57BL/6J and DBA/2J Inbred Mice. Physiology and Behavior, 1999, 67, 599-605.	2.1	91
95	Searching for the Source of Urinary Odors of Individuality in Rodents. , 1999, , 267-280.		7
96	Behavioural studies of MHC-congenic mice. Genetica, 1998, 104, 249-257.	1.1	10
97	Odors of individuality originating from the major histocompatibility complex are masked by diet cues in the urine of rats. Learning and Behavior, 1997, 25, 193-199.	3.4	36
98	Selective retrieval of jimpy mutant pups over normal male littermates by lactating female B6CBACa-A w-J /A-Ta jp mice. Behavior Genetics, 1995, 25, 75-80.	2.1	8
99	What is the role of the immune system in determining individually distinct body odours?. International Journal of Immunopharmacology, 1995, 17, 655-661.	1.1	60
100	The ontogeny of ultrasonic vocalizations and other behaviors in male jimpy (jp/Y) Mice and their normal male littermates. Developmental Psychobiology, 1994, 27, 101-110.	1.6	24
101	A comparison of the contribution of the major histocompatibility complex (MHC) and Y chromosomes to the discriminability of individual urine odors of mice by Long-Evans rats. Behavior Genetics, 1993, 23, 257-263.	2.1	37
102	The significance of father's presence for offspring survival in the monogamous California mouse, Peromyscus californicus. Animal Behaviour, 1993, 46, 539-546.	1.9	112
103	Hormonal and experiential factors influencing parental behaviour in male rodents: An integrative approach. Behavioural Processes, 1993, 30, 1-27.	1.1	97
104	Responses of dominant and subordinate male rats to the odors of male and female conspecifics. Aggressive Behavior, 1992, 18, 129-138.	2.4	15
105	Training rats to discriminate between the odors of individual conspecifics. Learning and Behavior, 1991, 19, 223-233.	3.4	41
106	Class I and class II regions of the major histocompatibility complex both contribute to individual odors in congenic inbred strains of rats. Behavior Genetics, 1989, 19, 659-674.	2.1	56
107	The Major Histocompatibility Complex and the chemosensory recognition of individuality in rats. Physiology and Behavior, 1987, 40, 65-73.	2.1	148
108	Effects of social isolation in adulthood on odor preferences and urine-marking in male rats. Behavioral and Neural Biology, 1985, 44, 139-143.	2.2	12

#	Article	IF	CITATIONS
109	Preferences of pre- and post-weanling long-evans rats for nest odors. Physiology and Behavior, 1982, 29, 865-874.	2.1	22
110	Interaction of hunger and sexual motivation in the male rat: A time-sharing approach. Animal Behaviour, 1979, 27, 887-896.	1.9	33
111	Other mazes. , 0, , 304-314.		0
112	Abnormal whisker movements in the <scp>3xTgâ€AD</scp> mouse model of Alzheimer's disease. Genes, Brain and Behavior, 0, , .	2.2	2