Jeffrey A Nittrouer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4675248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suspended Sedimentâ€Induced Stratification Inferred From Concentration and Velocity Profile Measurements in the Lower Yellow River, China. Water Resources Research, 2022, 58, e2020WR027192.	4.2	7
2	Transport Processes in the Gulf of Mexico Along the River-Estuary-Shelf-Ocean Continuum: a Review of Research from the Gulf of Mexico Research Initiative. Estuaries and Coasts, 2022, 45, 621-657.	2.2	10
3	Evidence for enhanced fluvial channel mobility and fine sediment export due to precipitation seasonality during the Paleocene-Eocene thermal maximum. Geology, 2022, 50, 116-120.	4.4	14
4	Amplification of downstream flood stage due to damming of fine-grained rivers. Nature Communications, 2022, 13, .	12.8	18
5	Impact of Artificial Floods on the Quantity and Grain Size of Riverâ€Borne Sediment: A Case Study of a Dam Regulation Scheme in the Yellow River Catchment. Water Resources Research, 2021, 57, e2021WR029581.	4.2	18
6	Optimized river diversion scenarios promote sustainability of urbanized deltas. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
7	Impacts of Engineered Diversions and Natural Avulsions on Delta‣obe Stability. Geophysical Research Letters, 2021, 48, e2021GL092438.	4.0	7
8	Universal relation with regime transition for sediment transport in fine-grained rivers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 171-176.	7.1	26
9	Can Reservoir Regulation Along the Yellow River Be a Sustainable Way to Save a Sinking Delta?. Earth's Future, 2020, 8, e2020EF001587.	6.3	34
10	Dune-scale cross-strata across the fluvial-deltaic backwater regime: Preservation potential of an autogenic stratigraphic signature. Geology, 2020, 48, 1144-1148.	4.4	9
11	Entrainment and suspension of sand and gravel. Earth Surface Dynamics, 2020, 8, 485-504.	2.4	32
12	How canyons evolve by incision into bedrock: Rainbow Canyon, Death Valley National Park, United States. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14730-14737.	7.1	6
13	Resilience of River Deltas in the Anthropocene. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005201.	2.8	48
14	Mud in rivers transported as flocculated and suspended bed material. Nature Geoscience, 2020, 13, 566-570.	12.9	55
15	Infilling Abandoned Deltaic Distributary Channels Through Landward Sediment Transport. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005254.	2.8	6
16	Sediment dynamics across gravel-sand transitions: Implications for river stability and floodplain recycling. Geology, 2020, 48, 468-472.	4.4	18
17	Evolution of a tide-dominated abandoned channel: A case of the abandoned Qingshuigou course, Yellow River. Marine Geology, 2020, 422, 106116.	2.1	10
18	Dunes in the world's big rivers are characterized by low-angle lee-side slopes and a complex shape. Nature Geoscience, 2020, 13, 156-162.	12.9	72

JEFFREY A NITTROUER

#	Article	IF	CITATIONS
19	Modeling the infilling process of an abandoned fluvial-deltaic distributary channel: An example from the Yellow River delta, China. Geomorphology, 2020, 361, 107204.	2.6	1
20	Predicting Water and Sediment Partitioning in a Delta Channel Network Under Varying Discharge Conditions. Water Resources Research, 2020, 56, e2020WR027199.	4.2	21
21	Modeling Deltaic Lobeâ€Building Cycles and Channel Avulsions for the Yellow River Delta, China. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2438-2462.	2.8	30
22	Extended Engelund–Hansen type sediment transport relation for mixtures based on the sand-silt-bed Lower Yellow River, China. Journal of Hydraulic Research/De Recherches Hydrauliques, 2019, 57, 770-785.	1.7	17
23	Origin of a Preferential Avulsion Node on Lowland River Deltas. Geophysical Research Letters, 2019, 46, 4267-4277.	4.0	39
24	Supplyâ€limited bedform patterns and scaling downstream of a gravel–sand transition. Sedimentology, 2019, 66, 2538-2556.	3.1	12
25	Roles of Bank Material in Setting Bankfull Hydraulic Geometry as Informed by the Selenga River Delta, Russia. Water Resources Research, 2019, 55, 827-846.	4.2	19
26	Sedimentary processes at ice sheet groundingâ€zone wedges revealed by outcrops, Washington State (USA). Earth Surface Processes and Landforms, 2019, 44, 1209-1220.	2.5	8
27	Impacts of Hurricane Storm Surge on Infrastructure Vulnerability for an Evolving Coastal Landscape. Natural Hazards Review, 2018, 19, .	1.5	37
28	Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions. Hydrological Processes, 2018, 32, 278-292.	2.6	24
29	River Morphodynamic Evolution Under Dam-Induced Backwater: An Example from the Po River (Italy). Journal of Sedimentary Research, 2018, 88, 1190-1204.	1.6	31
30	The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China. Science Advances, 2017, 3, e1603114.	10.3	50
31	Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976–2013): Dominant roles of riverine discharge and sediment grain size. Geomorphology, 2017, 292, 115-127.	2.6	91
32	Morphodynamic modeling of fluvial channel fill and avulsion time scales during early Holocene transgression, as substantiated by the incised valley stratigraphy of the Trinity River, Texas. Journal of Geophysical Research F: Earth Surface, 2017, 122, 215-234.	2.8	19
33	Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review. Global and Planetary Change, 2017, 157, 93-113.	3.5	208
34	Controls on gravel termination in seven distributary channels of the Selenga River Delta, Baikal Rift basin, Russia. Bulletin of the Geological Society of America, 2016, 128, 1297-1312.	3.3	20
35	Internal connectivity of meandering rivers: Statistical generalization of channel hydraulic geometry. Water Resources Research, 2015, 51, 7485-7500.	4.2	7
36	Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvialâ€bedrock transition and a downstream bedrockâ€alluvial transition: Implications for land building using engineered diversions. Journal of Geophysical Research F: Earth Surface, 2015, 120, 534-563.	2.8	23

JEFFREY A NITTROUER

#	Article	IF	CITATIONS
37	Sand as a stable and sustainable resource for nourishing the Mississippi River delta. Nature Geoscience, 2014, 7, 350-354.	12.9	132
38	Reply to 'Is sand in the Mississippi River delta a sustainable resource?'. Nature Geoscience, 2014, 7, 852-852.	12.9	3
39	Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China. Geophysical Research Letters, 2014, 41, 7882-7890.	4.0	103
40	Cost analysis of water and sediment diversions to optimize land building in the Mississippi River delta. Water Resources Research, 2013, 49, 3388-3405.	4.2	25
41	Spatial and temporal trends for water-flow velocity and bed-material sediment transport in the lower Mississippi River. Bulletin of the Geological Society of America, 2012, 124, 400-414.	3.3	167
42	Backwater controls of avulsion location on deltas. Geophysical Research Letters, 2012, 39, .	4.0	139
43	Backwater and river plume controls on scour upstream of river mouths: Implications for fluvioâ€deltaic morphodynamics. Journal of Geophysical Research, 2012, 117, .	3.3	146
44	Mitigating land loss in coastal Louisiana by controlled diversion of Mississippi River sand. Nature Geoscience, 2012, 5, 534-537.	12.9	100
45	Punctuated sand transport in the lowermost Mississippi River. Journal of Geophysical Research, 2011, 116, .	3.3	67
46	The lowermost Mississippi River: a mixed bedrockâ€alluvial channel. Sedimentology, 2011, 58, 1914-1934.	3.1	84
47	Bedform transport rates for the lowermost Mississippi River. Journal of Geophysical Research, 2008, 113	3.3	139