Sui-Dong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4674989/publications.pdf

Version: 2024-02-01

70961 88477 5,653 137 41 70 citations h-index g-index papers 137 137 137 9008 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human hair-derived carbon flakes for electrochemical supercapacitors. Energy and Environmental Science, 2014, 7, 379-386.	15.6	907
2	Synapseâ€Like Organic Thin Film Memristors. Advanced Functional Materials, 2018, 28, 1800854.	7.8	152
3	Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors. Energy and Environmental Science, 2017, 10, 2534-2543.	15.6	139
4	Contact-metal dependent current injection in pentacene thin-film transistors. Applied Physics Letters, 2007, 91, .	1.5	137
5	Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Applied Surface Science, 2011, 258, 1704-1710.	3.1	128
6	Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles. Nano Letters, 2013, 13, 6176-6182.	4.5	128
7	Highly Reproducible Surfaceâ€Enhanced Raman Scattering on a Capillarityâ€Assisted Gold Nanoparticle Assembly. Advanced Functional Materials, 2011, 21, 3337-3343.	7.8	126
8	Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy. Carbon, 2012, 50, 335-338.	5.4	111
9	Eosin Y functionalized graphene for photocatalytic hydrogen production from water. International Journal of Hydrogen Energy, 2011, 36, 8885-8893.	3.8	106
10	FTIR Spectroscopic Studies of the Stabilities and Reactivities of Hydrogen-Terminated Surfaces of Silicon Nanowires. Inorganic Chemistry, 2003, 42, 2398-2404.	1.9	105
11	Surface selective deposition of molecular semiconductors for solution-based integration of organic field-effect transistors. Applied Physics Letters, 2009, 94, .	1.5	96
12	Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale, 2015, 7, 6356-6362.	2.8	96
13	Correlation between grain size and device parameters in pentacene thin film transistors. Applied Physics Letters, 2008, 93, .	1.5	93
14	High-Performance Photoelectrochemical Cells from Ionic Liquid Electrolyte in Methyl-Terminated Silicon Nanowire Arrays. ACS Nano, 2010, 4, 5869-5876.	7.3	93
15	Bias stress instability in pentacene thin film transistors: Contact resistance change and channel threshold voltage shift. Applied Physics Letters, 2008, 92, 063305.	1.5	90
16	Conducting polymer-inorganic nanocomposite-based gas sensors: a review. Science and Technology of Advanced Materials, 2020, 21, 768-786.	2.8	88
17	A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells. Journal of Materials Chemistry A, 2014, 2, 1436-1442.	5.2	86
18	Transfer-Free Synthesis of Doped and Patterned Graphene Films. ACS Nano, 2015, 9, 594-601.	7.3	82

#	Article	IF	CITATIONS
19	High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. Journal of Materials Chemistry A, 2017, 5, 9032-9041.	5.2	79
20	Charge trapping induced current instability in pentacene thin film transistors: Trapping barrier and effect of surface treatment. Applied Physics Letters, 2008, 93, .	1.5	78
21	Selective organization of solution-processed organic field-effect transistors. Applied Physics Letters, 2008, 92, .	1.5	74
22	Bottom contact ambipolar organic thin film transistor and organic inverter based on C60/pentacene heterostructure. Organic Electronics, 2006, 7, 457-464.	1.4	70
23	Understanding contact behavior in organic thin film transistors. Applied Physics Letters, 2010, 97, 063307.	1.5	70
24	Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor. ACS Applied Materials & Supercapacitor. Supercapacitor. ACS Applied Materials & Supercapacitor. ACS	4.0	66
25	High performance single In2Se3 nanowire photodetector. Applied Physics Letters, 2011, 99, .	1.5	64
26	One-Pot Environmentally Friendly Approach toward Highly Catalytically Active Bimetal-Nanoparticle-Graphene Hybrids. ACS Applied Materials & Environmentally, 5, 5072-5079.	4.0	64
27	Flexible Nanogenerators Based on Graphene Oxide Films for Acoustic Energy Harvesting. Angewandte Chemie - International Edition, 2012, 51, 5418-5422.	7.2	63
28	Electronic Structure of Graphdiyne Probed by X-ray Absorption Spectroscopy and Scanning Transmission X-ray Microscopy. Journal of Physical Chemistry C, 2013, 117, 5931-5936.	1.5	62
29	Orderly Growth of Copper Phthalocyanine on Highly Oriented Pyrolytic Graphite (HOPG) at High Substrate Temperatures. Journal of Physical Chemistry B, 2004, 108, 1529-1532.	1.2	53
30	Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation. Nano-Micro Letters, 2016, 8, 371-380.	14.4	53
31	Novel bipolar host materials based on 1,3,5-triazine derivatives for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off. Physical Chemistry Chemical Physics, 2012, 14, 14255.	1.3	52
32	One-step synthesis of AuPd alloy nanoparticles on graphene as a stable catalyst for ethanol electro-oxidation. International Journal of Hydrogen Energy, 2016, 41, 13476-13484.	3.8	51
33	Solutionâ€Processed Highâ€Performance Hybrid Photodetectors Enhanced by Perovskite/MoS ₂ Bulk Heterojunction. Advanced Materials Interfaces, 2018, 5, 1800505.	1.9	50
34	Silicon Nanowires with Permanent Electrostatic Charges for Nanogenerators. Nano Letters, 2011, 11, 4870-4873.	4. 5	49
35	Morphology control of tunneling dielectric towards high-performance organic field-effect transistor nonvolatile memory. Organic Electronics, 2012, 13, 1908-1915.	1.4	47
36	Toward Broadband Imaging: Surface-Engineered PbS Quantum Dot/Perovskite Composite Integrated Ultrasensitive Photodetectors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44430-44437.	4.0	47

#	Article	IF	CITATIONS
37	Size-controllable self-assembly of metal nanoparticles on carbon nanostructures in room-temperature ionic liquids by simple sputtering deposition. Carbon, 2012, 50, 3008-3014.	5.4	45
38	Encapsulated Silver Nanoparticles Can Be Directly Converted to Silver Nanoshell in the Gas Phase. Nano Letters, 2015, 15, 8397-8401.	4.5	45
39	Synergistic Effects in CNTs-PdAu/Pt Trimetallic Nanoparticles with High Electrocatalytic Activity and Stability. Nano-Micro Letters, 2017, 9, 48.	14.4	45
40	Photon-energy-dependent light effects in organic nano-floating-gate nonvolatile memories. Organic Electronics, 2014, 15, 2486-2491.	1.4	43
41	Unraveling the Origin of Visible Light Capture by Core–Shell TiO ₂ Nanotubes. Chemistry of Materials, 2016, 28, 4467-4475.	3.2	42
42	Small and uniform Pd monometallic/bimetallic nanoparticles decorated on multi-walled carbon nanotubes for efficient reduction of 4-nitrophenol. Carbon, 2015, 94, 295-300.	5.4	41
43	Organic field-effect transistor nonvolatile memories based on hybrid nano-floating-gate. Applied Physics Letters, 2013, 102, .	1.5	39
44	Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. Journal of Chemical Physics, 2013, 138, 214304.	1.2	37
45	Solutionâ€Processed 2D Niobium Diselenide Nanosheets as Efficient Holeâ€Transport Layers in Organic Solar Cells. ChemSusChem, 2014, 7, 416-420.	3.6	37
46	Molecular Orientation and Film Morphology of Pentacene on Native Silicon Oxide Surface. Journal of Physical Chemistry B, 2005, 109, 9892-9896.	1.2	36
47	Transition-Voltage Method for Estimating Contact Resistance in Organic Thin-Film Transistors. IEEE Electron Device Letters, 2010, 31, 509-511.	2.2	35
48	Selective Solarâ€Blind UV Monitoring Based on Organic Fieldâ€Effect Transistor Nonvolatile Memories. Advanced Electronic Materials, 2017, 3, 1700052.	2.6	35
49	Experimental study of a chemical reaction between LiF and Al. Journal of Applied Physics, 2003, 94, 169-173.	1.1	34
50	Synthesis of carbon–PtAu nanoparticle hybrids originating from triethoxysilane-derivatized ionic liquids for methanol electrooxidation and the catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry A, 2013, 1, 9257.	5.2	34
51	Ultrasensitive ZnO Nanowire Photodetectors with a Polymer Electret Interlayer for Minimizing Dark Current. Advanced Optical Materials, 2020, 8, 1901289.	3.6	34
52	Naphthoylene(trifluoromethylbenzimidazole)-dicarboxylic acid imides for high-performance n-type organic field-effect transistors. Chemical Communications, 2012, 48, 2591.	2.2	33
53	Toward wearable electronics: A lightweight all-solid-state supercapacitor with outstanding transparency, foldability and breathability. Energy Storage Materials, 2019, 22, 402-409.	9.5	33
54	Selective UVâ€Gating Organic Memtransistors with Modulable Levels of Synaptic Plasticity. Advanced Electronic Materials, 2020, 6, 1900955.	2.6	33

#	Article	IF	Citations
55	Low-temperature solution-processed alumina as gate dielectric for reducing the operating-voltage of organic field-effect transistors. Applied Physics Letters, 2013, 103, .	1.5	31
56	Fabrication of a composite vascular scaffold using electrospinning technology. Materials Science and Engineering C, 2010, 30, 670-676.	3.8	30
57	Efficiency enhancement utilizing hybrid charge generation layer in tandem organic light-emitting diodes. Applied Physics Letters, 2012, 101, .	1.5	30
58	Operational stability enhancement of low-voltage organic field-effect transistors based on bilayer polymer dielectrics. Applied Physics Letters, 2013, 103, .	1.5	30
59	Low temperature, solution-processed alumina for organic solar cells. Nanotechnology, 2013, 24, 484010.	1.3	28
60	A near ambient pressure XPS study of subnanometer silver clusters on Al ₂ O ₃ and TiO ₂ ultrathin film supports. Physical Chemistry Chemical Physics, 2014, 16, 26645-26652.	1.3	27
61	Green-chemistry Compatible Approach to TiO2-supported PdAu Bimetallic Nanoparticles for Solvent-free 1-Phenylethanol Oxidation under Mild Conditions. Nano-Micro Letters, 2015, 7, 307-315.	14.4	27
62	Amine-Assisted Delaminated 2D Ti ₃ C ₂ T <i>_x</i> MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Aqueous Electrolytes. ACS Applied Materials & Specific Capacitance in Neutral Academy	4.0	26
63	ZnO nanowire optoelectronic synapse for neuromorphic computing. Nanotechnology, 2022, 33, 065205.	1.3	26
64	Etching Behavior of Silicon Nanowires with HF and NH4F and Surface Characterization by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy:Â Similarities and Differences between One-Dimensional and Two-Dimensional Silicon Surfaces. Journal of Physical Chemistry B, 2005, 109, 10871-10879.	1.2	25
65	Origin of bias stress induced instability of contact resistance in organic thin film transistors. Organic Electronics, 2011, 12, 823-826.	1.4	25
66	Filter-Free Selective Light Monitoring by Organic Field-Effect Transistor Memories with a Tunable Blend Charge-Trapping Layer. ACS Applied Materials & English (2019, 11, 40366-40371).	4.0	25
67	PPyNT-Im-PtAu Alloy Nanoparticle Hybrids with Tunable Electroactivity and Enhanced Durability for Methanol Electrooxidation and Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2752-2760.	4.0	23
68	Spatial profile of charge storage in organic field-effect transistor nonvolatile memory using polymer electret. Applied Physics Letters, 2013, 103, 143302.	1.5	22
69	Controllable molecular configuration for significant improvement of blue OLEDs based on novel twisted anthracene derivatives. Dyes and Pigments, 2015, 118, 137-144.	2.0	22
70	Vibrational and photoemission study of the interface between phenyl diamine and indium tin oxide. Applied Physics Letters, 2001, 79, 1561-1563.	1.5	21
71	Stability of Hydrogen-Terminated Surfaces of Silicon Nanowires in Aqueous Solutions. Journal of Physical Chemistry C, 2011, 115, 3866-3871.	1.5	21
72	Surface roughening evolution in pentacene thin film growth. Applied Physics Letters, 2011, 98, .	1.5	21

#	Article	IF	Citations
73	Interface optimization using diindenoperylene for C 60 thin film transistors with high electron mobility and stability. Organic Electronics, 2014, 15, 2749-2755.	1.4	21
74	Phototransistor based on single In ₂ Se ₃ nanosheets. Nanoscale, 2014, 6, 14538-14542.	2.8	21
75	Synergistic effect in organic field-effect transistor nonvolatile memory utilizing bimetal nanoparticles as nano-floating-gate. Organic Electronics, 2015, 25, 324-328.	1.4	21
76	Organic field-effect transistor nonvolatile memories utilizing sputtered C nanoparticles as nano-floating-gate. Applied Physics Letters, 2014, 105, 163302.	1.5	20
77	Memristive learning and memory functions in polyvinyl alcohol polymer memristors. AIP Advances, 2014, 4, .	0.6	20
78	Saturated deep-blue emitter based on a spiro[benzoanthracene–fluorene]-linked phenanthrene derivative for non-doped organic light-emitting diodes. New Journal of Chemistry, 2014, 38, 4696-4701.	1.4	20
79	Strong red emission of pure Y2O3 nanoparticles from oxygen related defects. Dalton Transactions, 2011, 40, 11362.	1.6	19
80	Efficient tuning of electroluminescence from sky-blue to deep-blue by changing the constitution of spirobenzofluorene derivatives. Dyes and Pigments, 2014, 108, 57-63.	2.0	19
81	Contact resistance instability in pentacene thin film transistors induced by ambient gases. Applied Physics Letters, 2009, 94, 083309.	1.5	18
82	In-situ photoelectron spectroscopy with online activity measurement for catalysis research. Current Applied Physics, 2012, 12, 1292-1296.	1.1	18
83	Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric. Organic Electronics, 2016, 34, 118-123.	1.4	18
84	Vibrational analysis of oxygen-plasma treated indium tin oxide. Chemical Physics Letters, 2003, 370, 795-798.	1.2	17
85	Understanding temperature dependence of threshold voltage in pentacene thin film transistors. Journal of Applied Physics, 2013, 113, .	1.1	17
86	Small-sized Al nanoparticles as electron injection hotspots in inverted organic light-emitting diodes. Organic Electronics, 2016, 28, 88-93.	1.4	17
87	Vibrational study of tris-(8-hydroxyquinoline) aluminum/LiF/Al interfaces. Applied Physics Letters, 2003, 82, 3218-3220.	1.5	16
88	In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation. Applied Surface Science, 2013, 283, 1076-1079.	3.1	16
89	Elucidation of ambient gas effects in organic nano-floating-gate nonvolatile memory. Applied Physics Letters, 2013, 102, 053303.	1.5	16
90	In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS. Catalysis Science and Technology, 2016, 6, 6778-6783.	2.1	16

#	Article	IF	Citations
91	Controlled surface doping for operating stability enhancement in organic field-effect transistors. Organic Electronics, 2017, 42, 367-371.	1.4	16
92	Revealing the Synergy of Mono/Bimetallic PdPt/TiO2 Heterostructure for Enhanced Photoresponse Performance. Journal of Physical Chemistry C, 2017, 121, 24861-24870.	1.5	16
93	Enhanced electron injection into tris(8-hydroxyquinoline) aluminum (Alq3) thin films by tetrathianaphthacene (TTN) doping revealed by current–voltage characteristics. Chemical Physics Letters, 2006, 423, 170-173.	1.2	15
94	Probing bias stress effect and contact resistance in bilayer ambipolar organic field-effect transistors. Applied Physics Letters, 2013, 103, .	1.5	15
95	Biasâ€Stressâ€Stable Lowâ€Voltage Organic Fieldâ€Effect Transistors with Ultrathin Polymer Dielectric on C Nanoparticles. Advanced Electronic Materials, 2016, 2, 1500349.	2.6	14
96	Solutionâ€Processed Polymer Thinâ€Film Memristors with an Electrochromic Feature and Frequencyâ€Dependent Synaptic Plasticity. Advanced Intelligent Systems, 2019, 1, 1900022.	3.3	14
97	Dynamic bias stress current instability caused by charge trapping and detrapping in pentacene thin film transistors. Applied Physics Letters, 2008, 93, .	1.5	13
98	A facile solution-processed alumina film as an efficient electron-injection layer for inverted organic light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 864-869.	2.7	13
99	Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories. Applied Physics Letters, 2015, 106, .	1.5	13
100	High Visibleâ€Lightâ€Stimulated Plasticity in Optoelectronic Synaptic Transistors for Irradiation Historyâ€Dependent Learning. Advanced Electronic Materials, 2020, 6, 1901255.	2.6	13
101	Space charge induced electroluminescence spectra shift in organic light-emitting diodes. Journal of Applied Physics, 2012, 112, 014513.	1.1	13
102	Physical implication of transition voltage in organic nano-floating-gate nonvolatile memories. Applied Physics Letters, 2016, 109, .	1.5	12
103	Visible-blind UV monitoring with a photochromic charge trapping layer in organic field-effect transistors. Applied Physics Letters, 2019, 115, 113302.	1.5	11
104	A novel one-step synthesis method for cuprous nanoparticles on multi-walled carbon nanotubes with high catalytic activity. Ceramics International, 2016, 42, 17916-17919.	2.3	10
105	Charge accumulation dynamics in organic thin film transistors. Applied Physics Letters, 2010, 97, .	1.5	9
106	Large Modulation of Charge Transport Anisotropy by Controlling the Alignment of π–π Stacks in Diketopyrrolopyrroleâ€Based Polymers. Advanced Materials Interfaces, 2015, 2, 1500153.	1.9	9
107	Intrinsic Ge nanowire nonvolatile memory based on a simple core–shell structure. Nanotechnology, 2014, 25, 075201.	1.3	8
108	Ionic-liquid-assisted one-pot synthesis of Cu ₂ O nanoparticles/multi-walled carbon nanotube nanocomposite for high-performance asymmetric supercapacitors. RSC Advances, 2018, 8, 20182-20189.	1.7	8

#	Article	IF	CITATIONS
109	Organic thin film memcapacitors. Applied Physics Letters, 2019, 114, .	1.5	8
110	Fingerprint Feature of Atomic Intermixing in Supported AuPd Nanocatalysts Probed by X-ray Absorption Fine Structure. Journal of Physical Chemistry C, 2017, 121, 28385-28394.	1.5	7
111	Highâ€Performance Organic Fieldâ€Effect Transistor with Matching Energyâ€Band Alignment between Organic Semiconductor and the Chargeâ€Trapping Dielectric. Advanced Electronic Materials, 2019, 5, 1800865.	2.6	7
112	Ultraviolet to Near-Infrared Broadband Phototransistors Based on Hybrid InGaZnO/C8-BTBT Heterojunction Structure. IEEE Electron Device Letters, 2021, 42, 998-1001.	2.2	7
113	Room temperature solution processed tungsten carbide as an efficient hole extraction layer for organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 3734-3740.	5.2	6
114	Flexible Low-Power Organic Complementary Inverter Based on Low- \${k}\$ Polymer Dielectric. IEEE Electron Device Letters, 2017, 38, 1461-1464.	2.2	6
115	Egg-White-Based Polymer Memristors With Competing Electronic-Ionic Effect and Timescale-Dependent Current Modulation. IEEE Electron Device Letters, 2021, 42, 228-231.	2.2	6
116	Photoemission and vibrational studies of metal/organic interfaces modified by plasma-polymerized fluorocarbon films. Applied Surface Science, 2004, 239, 117-124.	3.1	5
117	Electronegativity equalization model for interface barrier formation at reactive metal/organic contacts. Applied Physics Letters, 2009, 95, 173303.	1.5	5
118	Heterojunction effect on contact resistance minimization in staggered pentacene thin-film transistors. Applied Physics Express, 2016, 9, 111601.	1.1	5
119	Polymer Thin Film Memtransistors Based on Ion-Carrier Exchange Heterojunction. IEEE Electron Device Letters, 2021, 42, 1528-1531.	2.2	5
120	UV-Enabled Multibit Organic Transistor Memory With High Controllability and Stability. IEEE Electron Device Letters, 2022, 43, 124-127.	2.2	5
121	Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors. Journal Physics D: Applied Physics, 2017, 50, 025102.	1.3	4
122	Carrier injection in organic electronics: Injection hotspot effect beyond barrier reduction effect. Applied Physics Letters, 2018, 113, 043302.	1.5	4
123	Diamond nanoparticles with more surface functional groups obtained using carbon nanotubes as sources. Journal of Applied Physics, 2011, 110, 054321.	1.1	3
124	Impact of compound doping on hole and electron balance in p-i-n organic light-emitting diodes. AIP Advances, 2013, 3, 102124.	0.6	3
125	Threshold Voltage Extraction in the Saturation Regime Insensitive to the Contact Properties for Organic Thin-Film Transistors. Journal of Display Technology, 2014, 10, 615-618.	1.3	3
126	Interface Engineering for High Photoresponse in PbS Quantum-Dot Short-Wavelength Infrared Photodiodes. IEEE Electron Device Letters, 2022, 43, 1275-1278.	2.2	3

#	Article	IF	CITATIONS
127	Pulsed Bias Stress in Pentacene Thin Film Transistors and Effect of Contact Material. Japanese Journal of Applied Physics, 2010, 49, 01AB03.	0.8	2
128	Enhanced carrier injection hotspot effect by direct and simple ITO surface engineering. Applied Physics Letters, 2021, 118, 223301.	1.5	2
129	Small-Area Perovskite Photodiodes With High Detectivity and Stability. IEEE Electron Device Letters, 2021, 42, 1200-1203.	2.2	2
130	Ferroelectric polymer thin-film memristors with asymmetric top electrodes. Applied Physics Express, $0, , .$	1.1	2
131	HREELS study on the interaction of MgF2 with tris(8-hydroxy-quinoline) aluminum. Chemical Physics Letters, 2003, 374, 119-124.	1.2	1
132	Current Characteristics of Pristine and Tetrathianaphthacene-Doped Tris(8-Hydroxyquinoline) Aluminum (ALQ3) Thin Films. Molecular Crystals and Liquid Crystals, 2006, 455, 339-346.	0.4	1
133	Chemical Reaction between LiF and Al with or without the Presence of Alq ₃ . Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2003, 19, 770-773.	2.2	1
134	Progress and outlook on electron injection in inverted organic light-emitting diodes. Chinese Science Bulletin, 2021, 66, 2105-2116.	0.4	1
135	Soft memtransistor with ion transfer interface. Flexible and Printed Electronics, 2022, 7, 014015.	1.5	1
136	THE KINK EFFECTS IN NANO- GaAs DEVICES DUE TO MULTI-VALLEY ELECTRON TRANSPORT. International Journal of Modern Physics B, 2013, 27, 1350172.	1.0	0
137	Sensors: Selective Solar-Blind UV Monitoring Based on Organic Field-Effect Transistor Nonvolatile Memories (Adv. Electron. Mater. 8/2017). Advanced Electronic Materials, 2017, 3, .	2.6	O