
Aurélien Habrioux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4674829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmon spectroscopy for the determination of Ti ₃ C ₂ T _x MXene few layer stacks architecture. 2D Materials, 2022, 9, 035017.	4.4	2
2	A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter, 2021, 4, 1224-1251.	10.0	180
3	One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry. Applied Surface Science, 2020, 530, 147209.	6.1	172
4	Electronic Structure Sensitivity to Surface Disorder and Nanometer-Scale Impurity of 2D Titanium Carbide MXene Sheets as Revealed by Electron Energy-Loss Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 27071-27081.	3.1	9
5	Recent trends in hydrogen and oxygen electrocatalysis for anion exchange membrane technologies. Current Opinion in Electrochemistry, 2020, 21, 146-159.	4.8	9
6	On a Two-Dimensional MoS ₂ /Mo ₂ CT _x Hydrogen Evolution Catalyst Obtained by the Topotactic Sulfurization of Mo ₂ CT _x MXene. Journal of the Electrochemical Society, 2020, 167, 124507.	2.9	26
7	Facile Synthesis of Mesoporous Co3O4/CoO on rGO Nanocomposites as Highly Active and Stable Oxygen Bi-Functional Electrocatalysts. Journal of the Electrochemical Society, 2020, 167, 134509.	2.9	0
8	MXene Supported Cobalt Layered Double Hydroxide Nanocrystals: Facile Synthesis Route for a Synergistic Oxygen Evolution Reaction Electrocatalyst. Advanced Materials Interfaces, 2019, 6, 1901328.	3.7	66
9	Co ₃ O ₄ /rGO Catalysts for Oxygen Electrocatalysis: On the Role of the Oxide/Carbon Interaction. Journal of the Electrochemical Society, 2019, 166, H94-H102.	2.9	18
10	Hydration of Ti ₃ C ₂ T <i>_x</i> MXene: An Interstratification Process with Major Implications on Physical Properties. Chemistry of Materials, 2019, 31, 454-461.	6.7	70
11	Cu-ZnO catalysts for CO2 hydrogenation to methanol: Morphology change induced by ZnO lixiviation and its impact on the active phase formation. Molecular Catalysis, 2018, 446, 98-105.	2.0	34
12	Preparation and Electrochemical Properties of NiCo ₂ O ₄ Nanospinels Supported on Graphene Derivatives as Earthâ€Abundant Oxygen Bifunctional Catalysts. ChemPhysChem, 2018, 19, 319-326.	2.1	5
13	Metal Loading Effect on the Activity of Co ₃ O ₄ /Nâ€Doped Reduced Graphene Oxide Nanocomposites as Bifunctional Oxygen Reduction/Evolution Catalysts. ChemElectroChem, 2018, 5, 483-493.	3.4	20
14	Co-Based Mesoporous Spinels for Oxygen Evolution Reaction in Alkaline Medium. ECS Transactions, 2017, 77, 15-24.	0.5	2
15	Three dimensionally ordered mesoporous hydroxylated Ni _x Co _{3â°x} O ₄ spinels for the oxygen evolution reaction: on the hydroxyl-induced surface restructuring effect. Journal of Materials Chemistry A, 2017, 5, 7173-7183.	10.3	52
16	Complementary Ion Beam Analysis and Raman Studies for Investigation of the Carbon Coating Impact on Li Insertion/Deinsertion Process at LiFePO ₄ /C Electrodes. Journal of the Electrochemical Society, 2017, 164, A3538-A3544.	2.9	4
17	Effect of gradual reduction of graphene oxide on the CO tolerance of supported platinum nanoparticles. Carbon, 2017, 111, 849-858.	10.3	31
18	Effect of the Oxide–Carbon Heterointerface on the Activity of Co ₃ O ₄ /NRGO Nanocomposites toward ORR and OER. Journal of Physical Chemistry C, 2016, 120, 7949-7958.	3.1	137

#	Article	IF	CITATIONS
19	Electrochemically induced surface modifications of mesoporous spinels (Co3O4â^îŕ, MnCo2O4â^îŕ,) Tj ETQq1 Chemistry A, 2015, 3, 17433-17444.	l 0.784314 10.3	rgBT /Overlo 85
20	Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 11891-11904.	10.3	143
21	Thermally Induced Strains on the Catalytic Activity and Stability of Pt–M ₂ O ₃ /C (M=Y or Gd) Catalysts towards Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 1573-1582.	3.7	27
22	The Effect of Substrates at Cathodes in Lowâ€ŧemperature Fuel Cells. ChemElectroChem, 2014, 1, 37-46.	3.4	29
23	Mixed-oxide Ti1â^'xWxO2 as support for (photo)-electrochemical processes. Applied Catalysis B: Environmental, 2014, 147, 756-763.	20.2	5
24	Yttrium Oxide/Gadolinium Oxideâ€Modified Platinum Nanoparticles as Cathodes for the Oxygen Reduction Reaction. ChemPhysChem, 2014, 15, 2136-2144.	2.1	49
25	Photohole Trapping Induced Platinum Cluster Nucleation on the Surface of TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 1111-1117.	3.1	13
26	Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells. Physical Chemistry Chemical Physics, 2014, 16, 13820.	2.8	16
27	Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell. International Journal of Hydrogen Energy, 2014, 39, 5406-5413.	7.1	25
28	Correlation between surface chemical composition with catalytic activity and selectivity of organic-solvent synthesized Pt–Ti nanoparticles. Journal of Materials Chemistry A, 2013, 1, 8798.	10.3	16
29	Enhanced HER and ORR behavior on photodeposited Pt nanoparticles onto oxide–carbon composite. Journal of Solid State Electrochemistry, 2013, 17, 1913-1921.	2.5	21
30	Induced electronic modification of Pt nanoparticles deposited onto graphitic domains of carbon materials by UV irradiation. Electrochemistry Communications, 2013, 29, 12-16.	4.7	24
31	Spectroelectrochemical Probing of the Strong Interaction between Platinum Nanoparticles and Graphitic Domains of Carbon. ACS Catalysis, 2013, 3, 1940-1950.	11.2	78
32	Kinetic Study of Oxygen Reduction Reaction on Carbon Supported Pd-Based Nanomaterials in Alkaline Medium. Journal of the Electrochemical Society, 2013, 160, H302-H308.	2.9	19
33	Towards Understanding the Essential Role Played by the Platinum-Support Interaction on Electrocatalytic Activity. ECS Transactions, 2013, 45, 25-33.	0.5	5
34	Tailoring nanostructured catalysts for electrochemical energy conversion systems. Nanotechnology Reviews, 2012, 1, 427-453.	5.8	13
35	Functionalizing Effect of Increasingly Graphitic Carbon Supports on Carbon-Supported and TiO ₂ –Carbon Composite-Supported Pt Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 21788-21794.	3.1	49
36	Nuclear microanalysis of lithium dispersion in LiFePO4 based cathode materials for Li-ion batteries. Nuclear Instruments & Methods in Physics Research B, 2012, 290, 13-18.	1.4	17

Aurélien Habrioux

#	Article	IF	CITATIONS
37	Activity of sputtered gold particles layers towards glucose electrochemical oxidation in alkaline medium. Current Applied Physics, 2011, 11, 1149-1152.	2.4	8
38	Effect of the Cleaning Step on the Morphology of Gold Nanoparticles. Electrocatalysis, 2011, 2, 24-27.	3.0	7
39	Oxygen Electroreduction Catalyzed by Bilirubin Oxidase Does Not Release Hydrogen Peroxide. Electrocatalysis, 2011, 2, 268-272.	3.0	9
40	One-Step Synthesis of Clean and Size-Controlled Gold Electrocatalysts: Modeling by Taguchi Design of Experiments. Electrocatalysis, 2011, 2, 279-284.	3.0	13
41	Electrochemical characterization of adsorbed bilirubin oxidase on Vulcan XC 72R for the biocathode preparation in a glucose/O2 biofuel cell. Electrochimica Acta, 2010, 55, 7701-7705.	5.2	41
42	Electrocatalytic Activity of Supported Au–Pt Nanoparticles for CO Oxidation and O2 Reduction in Alkaline Medium. Electrocatalysis, 2010, 1, 51-59.	3.0	23
43	Decorated nanotube buckypaper as electrocatalyst for glucose fuel cells. , 2009, , .		1
44	Long-term activity of covalent grafted biocatalysts during intermittent use of a glucose/O2 biofuel cell. Electrochimica Acta, 2009, 54, 2998-3003.	5.2	36
45	Enhancement of the performances of a single concentric glucose/O2 biofuel cell by combination of bilirubin oxidase/Nafion cathode and Au–Pt anode. Electrochemistry Communications, 2009, 11, 111-113.	4.7	55
46	Structural and electrochemical studies of Au–Pt nanoalloys. Physical Chemistry Chemical Physics, 2009, 11, 3573.	2.8	101
47	Concentric glucose/O2 biofuel cell. Journal of Electroanalytical Chemistry, 2008, 622, 97-102.	3.8	73
48	Activity of Platinumâ^'Gold Alloys for Glucose Electrooxidation in Biofuel Cells. Journal of Physical Chemistry B, 2007, 111, 10329-10333.	2.6	168
49	Glucose Oxidation on Au-Pt Nanoparticles in a Membrane-Less Biofuel Cell. ECS Transactions, 2007, 6, 9-17.	0.5	3