Margaret E Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4674748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Coalition for Conservation Genetics: Working across organizations to build capacity and achieve change in policy and practice. Conservation Science and Practice, 2022, 4, .	0.9	17
2	Novel insights on aquatic mammal MHC evolution: Evidence from manatee DQB diversity. Developmental and Comparative Immunology, 2022, 132, 104398.	1.0	1
3	Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (<scp>EBVs</scp>) for genetic composition. Biological Reviews, 2022, 97, 1511-1538.	4.7	73
4	A framework to integrate innovations in invasion science for proactive management. Biological Reviews, 2022, 97, 1712-1735.	4.7	17
5	Environmental DNA Methods for Ecological Monitoring and Biodiversity Assessment in Estuaries. Estuaries and Coasts, 2022, 45, 2254-2273.	1.0	16
6	Effective population size remains a suitable, pragmatic indicator of genetic diversity for all species, including forest trees. Biological Conservation, 2021, 253, 108906.	1.9	32
7	Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecology Letters, 2021, 24, 1282-1284.	3.0	27
8	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	0.8	18
9	Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. BioScience, 2021, 71, 964-976.	2.2	96
10	Lipidomics reveals specific lipid molecules associated with cold stress syndrome in the Florida manatee (Trichechus manatus latirostris). Marine Biology, 2021, 168, 1.	0.7	2
11	Chronic exposure to glyphosate in Florida manatee. Environment International, 2021, 152, 106493.	4.8	17
12	Opportunities and challenges of macrogenetic studies. Nature Reviews Genetics, 2021, 22, 791-807.	7.7	55
13	Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biological Conservation, 2021, 261, 109233.	1.9	65
14	Strategic considerations for invasive species managers in the utilization of environmental DNA (eDNA): steps for incorporating this powerful surveillance tool. Management of Biological Invasions, 2021, 12, 747-775.	0.5	25
15	Genetic Connectivity of the West Indian Manatee in the Southern Range and Limited Evidence of Hybridization With Amazonian Manatees. Frontiers in Marine Science, 2021, 7, .	1.2	15
16	Diet composition of the African manatee: Spatial and temporal variation within the Sanaga River Watershed, Cameroon. Ecology and Evolution, 2021, 11, 15833-15845.	0.8	3
17	Reporting the limits of detection and quantification for environmental DNA assays. Environmental DNA, 2020, 2, 271-282.	3.1	269
18	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	1.9	285

#	Article	IF	CITATIONS
19	Investigating the gene expression profiles of rehabilitated Florida manatees (Trichechus manatus) Tj ETQq1 1 0.7	784314 rgl 1.1	BT JOverlock
20	Life history, genetics, range expansion and new frontiers of the lionfish (Pterois volitans,) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50 702 Td (
21	Environmental DNA sampling reveals high occupancy rates of invasive Burmese pythons at wading bird breeding aggregations in the central Everglades. PLoS ONE, 2019, 14, e0213943.	1.1	17
22	Efficacy of eDNA as an early detection indicator for Burmese pythons in the ARM Loxahatchee National Wildlife Refuge in the greater Everglades ecosystem. Ecological Indicators, 2019, 102, 617-622.	2.6	30
23	Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Scientific Reports, 2019, 9, 5259.	1.6	103
24	The Florida manatee (Trichechus manatus latirostris) T cell receptor loci exhibit V subgroup synteny and chain-specific evolution. Developmental and Comparative Immunology, 2018, 85, 71-85.	1.0	33
25	Novel ecological and climatic conditions drive rapid adaptation in invasive Florida Burmese pythons. Molecular Ecology, 2018, 27, 4744-4757.	2.0	30
26	A novel technique for isolating DNA from Tempusâ,,¢ blood RNA tubes after RNA isolation. BMC Research Notes, 2018, 11, 563.	0.6	3
27	Cytonuclear discordance in the Florida Everglades invasive Burmese python (Python bivittatu s) population reveals possible hybridization with the Indian python (P.Amolurus). Ecology and Evolution, 2018, 8, 9034-9047.	0.8	10

28	Nextâ€generation conservation genetics and biodiversity monitoring. Evolutionary Applications, 2018, 11, 1029-1034.	1.5
----	---	-----

29	The Florida manatee (Trichechus manatus latirostris) immunoglobulin heavy chain suggests the importance of clan III variable segments in repertoire diversity. Developmental and Comparative Immunology, 2017, 72, 57-68.	1.0	21
30	Detection limits of quantitative and digital <scp>PCR</scp> assays and their influence in presence–absence surveys of environmental <scp>DNA</scp> . Molecular Ecology Resources, 2017, 17, 221-229.	2.2	106
31	Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons. PLoS ONE, 2015, 10, e0121655.	1.1	166
32	Wide-ranging phylogeographic structure of invasive red lionfish in the Western Atlantic and Greater Caribbean. Marine Biology, 2015, 162, 773-781.	0.7	22
33	Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150120.	1.2	62
34	Statistical Models for the Analysis and Design of Digital Polymerase Chain Reaction (dPCR) Experiments. Analytical Chemistry, 2015, 87, 10886-10893.	3.2	24
35	Genetic analysis of invasive Asian Black Carp (Mylopharyngodon piceus) in the Mississippi River Basin: evidence for multiple introductions. Biological Invasions, 2015, 17, 99-114.	1.2	12

36 Burmese Pythonâ€"Python molurus bivittatusã€"Management. International Journal of Molecular 1.8 17 Sciences, 2013, 14, 4793-4804.

#	Article	IF	CITATIONS
37	Validation of eDNA Surveillance Sensitivity for Detection of Asian Carps in Controlled and Field Experiments. PLoS ONE, 2013, 8, e58316.	1.1	149
38	Puerto Rico and Florida manatees represent genetically distinct groups. Conservation Genetics, 2012, 13, 1623-1635.	0.8	37
39	Low genetic diversity and minimal population substructure in the endangered Florida manatee: implications for conservation. Journal of Mammalogy, 2012, 93, 1504-1511.	0.6	27
40	Phylogeographic implications for release of critically endangered manatee calves rescued in Northeast Brazil. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 665-672.	0.9	23
41	Genome-wide SNP analysis of three moose subspecies at the southern range limit in the contiguous United States. Conservation Genetics, 0, , 1.	0.8	2