

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4674698/publications.pdf Version: 2024-02-01

YINC GE

#	Article	IF	CITATIONS
1	Review of arsenic speciation, toxicity and metabolism in microalgae. Reviews in Environmental Science and Biotechnology, 2015, 14, 427-451.	8.1	142
2	lron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: a review. Frontiers of Environmental Science and Engineering, 2012, 6, 509-517.	6.0	105
3	Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regulation, 2009, 59, 51-61.	3.4	102
4	Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review. Critical Reviews in Environmental Science and Technology, 2019, 49, 1769-1802.	12.8	102
5	Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress. Rice Science, 2008, 15, 73-76.	3.9	57
6	Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress. Chemosphere, 2021, 274, 129771.	8.2	49
7	Nonâ€protein thiols and glutathione Sâ€transferase alleviate Cd stress and reduce rootâ€toâ€shoot translocation of Cd in rice. Journal of Plant Nutrition and Soil Science, 2013, 176, 626-633.	1.9	45
8	A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes. Journal of Hazardous Materials, 2016, 318, 443-451.	12.4	34
9	Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes. Environmental Science and Pollution Research, 2017, 24, 21213-21221.	5.3	34
10	Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes. Ecotoxicology and Environmental Safety, 2017, 136, 150-160.	6.0	32
11	Quantitative proteomic analysis of Dunaliella salina upon acute arsenate exposure. Chemosphere, 2016, 145, 112-118.	8.2	31
12	Effects of pH, Fe, and Cd on the uptake of Fe2+ and Cd2+ by rice. Environmental Science and Pollution Research, 2013, 20, 8947-8954.	5.3	30
13	Extracellular polymeric substances alter cell surface properties, toxicity, and accumulation of arsenic in Synechocystis PCC6803. Environmental Pollution, 2020, 261, 114233.	7.5	30
14	Effect of H2O2 Pretreatment on Cd Tolerance of Different Rice Cultivars. Rice Science, 2011, 18, 29-35.	3.9	29
15	Modeling Sorption of Cd, Hg and Pb in Soils by the NICA-Donnan Model. Soil and Sediment Contamination, 2005, 14, 53-69.	1.9	25
16	Sorption and transformation of arsenic by extracellular polymeric substances extracted from Synechocystis sp. PCC6803. Ecotoxicology and Environmental Safety, 2020, 206, 111200.	6.0	22
17	Adequate supply of sulfur simultaneously enhances iron uptake and reduces cadmium accumulation in rice grown in hydroponic culture. Environmental Pollution, 2020, 262, 114327.	7.5	21
18	Effects of sulfur supply and hydrogen peroxide pretreatment on the responses by rice under cadmium stress. Plant Growth Regulation, 2015, 77, 299-306.	3.4	19

Ying Ge

#	Article	IF	CITATIONS
19	Soil microalgae modulate grain arsenic accumulation by reducing dimethylarsinic acid and enhancing nutrient uptake in rice (Oryza sativa L.). Plant and Soil, 2018, 430, 99-111.	3.7	15
20	Arsenate toxicity and metabolism in the halotolerant microalga Dunaliella salina under various phosphate regimes. Environmental Sciences: Processes and Impacts, 2016, 18, 735-743.	3.5	14
21	Mechanisms for high Cd activity in a red soil from southern China undergoing gradual reduction. Soil Research, 2010, 48, 371.	1.1	14
22	Complete Chemical and Enzymatic Treatment of Phosphorylated and Glycosylated Proteins on ProteinChip Arrays. Analytical Chemistry, 2005, 77, 3644-3650.	6.5	12
23	Purification and Identification of Glutathione S-transferase in Rice Root under Cadmium Stress. Rice Science, 2013, 20, 173-178.	3.9	12
24	Contributions of polysaccharides to arsenate resistance in Chlamydomonas reinhardtii. Ecotoxicology and Environmental Safety, 2022, 229, 113091.	6.0	12
25	Evaluation of Soil Surface Charge Using the Backâ€Titration Technique. Soil Science Society of America Journal, 2004, 68, 82-88.	2.2	11
26	Separation and quantification of cysteine, glutathione and phytochelatins in rice (Oryza sativa L.) upon cadmium exposure using reverse phase ultra performance liquid chromatography (RP-UPLC) with fluorescence detection. Analytical Methods, 2013, 5, 6147.	2.7	11
27	Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice?. Environmental Science and Pollution Research, 2015, 22, 19497-19506.	5.3	9
28	Cadmium Bioavailability and Accumulation in Rice Grain are Controlled by pH and Ca in Paddy Soils with High Geological Background of Transportation and Deposition. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 92-98.	2.7	8
29	Effects of algal–bacterial ratio on the growth and cadmium accumulation of <i>Chlorella salina–Bacillus subtilis</i> consortia. Journal of Basic Microbiology, 2022, 62, 518-529.	3.3	7
30	Microalgae and their effects on metal bioavailability in paddy fields. Journal of Soils and Sediments, 2018, 18, 936-945.	3.0	6
31	Arsenite Oxidation by Dunaliella salina is Affected by External Phosphate Concentration. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 868-873.	2.7	5
32	Transmission Electron Microscopy Analysis on Microbial Ultrathin Sections Prepared by the Ultra-Low Lead Staining Technique. Microscopy and Microanalysis, 2021, 27, 1265-1272.	0.4	4
33	Physiological and proteomic responses of Chlamydomonas reinhardtii to arsenate and lead mixtures. Ecotoxicology and Environmental Safety, 2022, 242, 113856.	6.0	3
34	Determination of speciation and bioavailability of Cd in soil solution using a modified soil column Donnan membrane technique. Chemical Speciation and Bioavailability, 2009, 21, 7-13.	2.0	2
35	Simple, Rapid, and Sensitive Determination of Thiols by Liquid Chromatography with Fluorescence Detection. Analytical Letters, 2019, 52, 1487-1499.	1.8	2