
Alexandra Schäfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4674552/publications.pdf Version: 2024-02-01

ALEXANDRA SCHÃOER

#	Article	IF	CITATIONS
1	Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 2020, 11, 222.	12.8	1,376
2	SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 2020, 182, 429-446.e14.	28.9	1,257
3	SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 2020, 586, 567-571.	27.8	1,153
4	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	27.8	956
5	An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine, 2020, 12, .	12.4	886
6	SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 2020, 370, 1464-1468.	12.6	808
7	A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature, 2020, 586, 560-566.	27.8	527
8	A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell, 2020, 183, 1070-1085.e12.	28.9	472
9	A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell, 2020, 183, 169-184.e13.	28.9	446
10	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell, 2020, 183, 1367-1382.e17.	28.9	420
11	Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Reports, 2020, 32, 107940.	6.4	412
12	Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. MBio, 2015, 6, e00638-15.	4.1	390
13	SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature, 2021, 591, 451-457.	27.8	320
14	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	8.5	283
15	Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches To Control Interferon-Stimulated Gene Responses. MBio, 2014, 5, e01174-14.	4.1	246
16	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
17	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	12.6	144
18	MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1012-E1021.	7.1	142

Alexandra SchÃ**p**er

#	Article	IF	CITATIONS
19	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	28.9	131
20	Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature, 2021, 599, 465-470.	27.8	129
21	High Potency of a Bivalent Human VH Domain in SARS-CoV-2 Animal Models. Cell, 2020, 183, 429-441.e16.	28.9	100
22	Epigenetic Landscape during Coronavirus Infection. Pathogens, 2017, 6, 8.	2.8	96
23	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	12.4	93
24	Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three animal models of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29832-29838.	7.1	81
25	Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBioMedicine, 2020, 62, 103132.	6.1	77
26	Allelic Variation in the Toll-Like Receptor Adaptor Protein <i>Ticam2</i> Contributes to SARS-Coronavirus Pathogenesis in Mice. G3: Genes, Genomes, Genetics, 2017, 7, 1653-1663.	1.8	75
27	Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Reports, 2021, 37, 109929.	6.4	64
28	A Newcastle Disease Virus (NDV) Expressing a Membrane-Anchored Spike as a Cost-Effective Inactivated SARS-CoV-2 Vaccine. Vaccines, 2020, 8, 771.	4.4	61
29	The Role of the Blood-Brain Barrier during Venezuelan Equine Encephalitis Virus Infection. Journal of Virology, 2011, 85, 10682-10690.	3.4	59
30	COVID-19 vaccine mRNA-1273 elicits a protective immune profile in mice that is not associated with vaccine-enhanced disease upon SARS-CoV-2 challenge. Immunity, 2021, 54, 1869-1882.e6.	14.3	59
31	The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity. Virology Journal, 2014, 11, 209.	3.4	58
32	The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus. BMC Systems Biology, 2016, 10, 93.	3.0	58
33	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	6.5	56
34	SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Science Translational Medicine, 2022, 14, .	12.4	55
35	Therapeutic treatment with an oral prodrug of the remdesivir parental nucleoside is protective against SARS-CoV-2 pathogenesis in mice. Science Translational Medicine, 2022, 14, eabm3410.	12.4	49
36	Cell and animal models of SARS-CoV-2 pathogenesis and immunity. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	46

Alexandra Schãper

#	Article	IF	CITATIONS
37	Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nature Immunology, 2022, 23, 960-970.	14.5	39
38	Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Reports, 2021, 36, 109450.	6.4	38
39	Dissecting strategies to tune the therapeutic potential of SARS-CoV-2–specific monoclonal antibody CR3022. JCI Insight, 2021, 6, .	5.0	34
40	Development of a Broadly Accessible Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Platform. Journal of Virology, 2018, 92, .	3.4	33
41	Complex Genetic Architecture Underlies Regulation of Influenza-A-Virus-Specific Antibody Responses in the Collaborative Cross. Cell Reports, 2020, 31, 107587.	6.4	31
42	Baseline T cell immune phenotypes predict virologic and disease control upon SARS-CoV infection in Collaborative Cross mice. PLoS Pathogens, 2021, 17, e1009287.	4.7	22
43	A modified vaccinia Ankara vaccine expressing spike and nucleocapsid protects rhesus macaques against SARS-CoV-2 Delta infection. Science Immunology, 2022, 7, eabo0226.	11.9	22
44	SARS-Like Coronavirus WIV1-CoV Does Not Replicate in Egyptian Fruit Bats (Rousettus aegyptiacus). Viruses, 2018, 10, 727.	3.3	21
45	Remdesivir Potently Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. SSRN Electronic Journal, 0, , .	0.4	15
46	Systems approaches to coronavirus pathogenesis. Current Opinion in Virology, 2014, 6, 61-69.	5.4	12
47	Protective Efficacy of Rhesus Adenovirus COVID-19 Vaccines against Mouse-Adapted SARS-CoV-2. Journal of Virology, 2021, 95, e0097421.	3.4	12
48	A Multitrait Locus Regulates Sarbecovirus Pathogenesis. MBio, 2022, 13, .	4.1	11
49	Immune predictors of mortality following RNA virus infection. Journal of Infectious Diseases, 2020, 221, 882-889.	4.0	10