Ali Coskun

List of Publications by Citations

Source: https://exaly.com/author-pdf/4674400/ali-coskun-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

122
papers9,942
citations52
h-index99
g-index138
ext. papers11,071
ext. citations12.3
avg, IF6.58
L-index

#	Paper	IF	Citations
122	Great expectations: can artificial molecular machines deliver on their promise?. <i>Chemical Society Reviews</i> , 2012 , 41, 19-30	58.5	723
121	Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. <i>Science</i> , 2017 , 357, 279-283	33.3	670
120	Enzyme-responsive snap-top covered silica nanocontainers. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2382-3	16.4	544
119	Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. <i>Nature Communications</i> , 2013 , 4, 1357	17.4	395
118	Ion sensing coupled to resonance energy transfer: a highly selective and sensitive ratiometric fluorescent chemosensor for Ag(I) by a modular approach. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10464-5	16.4	393
117	Signal ratio amplification via modulation of resonance energy transfer: proof of principle in an emission ratiometric Hg(II) sensor. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14474-5	16.4	375
116	High hopes: can molecular electronics realise its potential?. Chemical Society Reviews, 2012, 41, 4827-59	58.5	258
115	Effective PET and ICT switching of boradiazaindacene emission: a unimolecular, emission-mode, molecular half-subtractor with reconfigurable logic gates. <i>Organic Letters</i> , 2005 , 7, 5187-9	6.2	257
114	Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3106-7	1 ^{16.4}	249
113	Hyperbranched Eyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. <i>Nano Letters</i> , 2014 , 14, 864-70	11.5	230
112	Bis(2-pyridyl)-substituted boratriazaindacene as an NIR-emitting chemosensor for Hg(II). <i>Organic Letters</i> , 2007 , 9, 607-9	6.2	221
111	The emerging era of supramolecular polymeric binders in silicon anodes. <i>Chemical Society Reviews</i> , 2018 , 47, 2145-2164	58.5	217
110	Charged Covalent Triazine Frameworks for CO Capture and Conversion. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 7209-7216	9.5	202
109	Design strategies for ratiometric chemosensors: modulation of excitation energy transfer at the energy donor site. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9007-13	16.4	201
108	Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. <i>Energy and Environmental Science</i> , 2015 , 8, 1224-1230	35.4	179
107	Chromatography in a single metal-organic framework (MOF) crystal. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16358-61	16.4	177
106	Highly stable tetrathiafulvalene radical dimers in [3]catenanes. <i>Nature Chemistry</i> , 2010 , 2, 870-9	17.6	159

(2012-2016)

105	Porous cationic polymers: the impact of counteranions and charges on CO2 capture and conversion. <i>Chemical Communications</i> , 2016 , 52, 934-7	5.8	127
104	Systematic molecular-level design of binders incorporating Meldrum acid for silicon anodes in lithium rechargeable batteries. <i>Advanced Materials</i> , 2014 , 26, 7979-85	24	124
103	Dynamic Cross-Linking of Polymeric Binders Based on Host-Guest Interactions for Silicon Anodes in Lithium Ion Batteries. <i>ACS Nano</i> , 2015 , 9, 11317-24	16.7	123
102	Perfluoroaryl-Elemental Sulfur SNAr Chemistry in Covalent Triazine Frameworks with High Sulfur Contents for LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1703947	15.6	118
101	A light-stimulated molecular switch driven by radical-radical interactions in water. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6782-8	16.4	115
100	Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation. <i>Chemistry - A European Journal</i> , 2014 , 20, 772-80	4.8	113
99	Solution-phase mechanistic study and solid-state structure of a tris(bipyridinium radical cation) inclusion complex. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3061-72	16.4	112
98	A light-gated STOP-GO molecular shuttle. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2493-5	16.4	112
97	Metal nanoparticles functionalized with molecular and supramolecular switches. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4233-5	16.4	111
96	Mechanically stabilized tetrathiafulvalene radical dimers. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4538-47	16.4	110
95	Photoinduced memory effect in a redox controllable bistable mechanical molecular switch. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1611-5	16.4	109
94	Dynamic hook-and-eye nanoparticle sponges. <i>Nature Chemistry</i> , 2009 , 1, 733-8	17.6	104
93	Nanoporous Polymers Incorporating Sterically Confined N-Heterocyclic Carbenes for Simultaneous CO2 Capture and Conversion at Ambient Pressure. <i>Chemistry of Materials</i> , 2015 , 27, 6818-6826	9.6	98
92	Pillar[5]arene Based Conjugated Microporous Polymers for Propane/Methane Separation through Host © uest Complexation. <i>Chemistry of Materials</i> , 2016 , 28, 4460-4466	9.6	96
91	Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules. <i>Accounts of Chemical Research</i> , 2014 , 47, 482-93	24.3	96
90	An Aqueous Sodium Ion Hybrid Battery Incorporating an Organic Compound and a Prussian Blue Derivative. <i>Advanced Energy Materials</i> , 2014 , 4, 1400133	21.8	93
89	Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7710-7717	13	93
88	Metal-organic frameworks incorporating copper-complexed rotaxanes. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2160-3	16.4	92

87	Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions. <i>Tetrahedron Letters</i> , 2004 , 45, 4947-4949	2	89
86	Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance LithiumBulfur Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 3158-3163	3.6	89
85	Rational Sulfur Cathode Design for Lithium Bulfur Batteries: Sulfur-Embedded Benzoxazine Polymers. <i>ACS Energy Letters</i> , 2016 , 1, 566-572	20.1	88
84	Highly Hydrophobic ZIF-8/Carbon Nitride Foam with Hierarchical Porosity for Oil Capture and Chemical Fixation of CO2. <i>Advanced Functional Materials</i> , 2017 , 27, 1700706	15.6	87
83	Nanoporous covalent organic polymers incorporating Trgerly base functionalities for enhanced CO2 capture. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12507	13	78
82	Mechanically Interlocked Molecules Assembled by Recognition. <i>ChemPlusChem</i> , 2012 , 77, 159-185	2.8	78
81	Chemical Blowing Approach for Ultramicroporous Carbon Nitride Frameworks and Their Applications in Gas and Energy Storage. <i>Advanced Functional Materials</i> , 2017 , 27, 1604658	15.6	77
80	Highly efficient ultrafast electron injection from the singlet MLCT excited state of copper(I) diimine complexes to TiO2 nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12711-5	16.4	77
79	Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions. <i>Nano Letters</i> , 2009 , 9, 3185-90	11.5	73
78	Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2075-A2081	3.9	71
77	Effect of N-substitution in naphthalenediimides on the electrochemical performance of organic rechargeable batteries. <i>RSC Advances</i> , 2012 , 2, 7968	3.7	69
76	Imprinting chemical and responsive micropatterns into metal-organic frameworks. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 276-9	16.4	63
75	Molecular-mechanical switching at the nanoparticle-solvent interface: practice and theory. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4310-20	16.4	57
74	A multistate switchable [3]rotacatenane. <i>Chemistry - A European Journal</i> , 2011 , 17, 213-22	4.8	54
73	Novel fluorescent chemosensor for anions via modulation of oxidative PET: a remarkable 25-fold enhancement of emission. <i>Tetrahedron Letters</i> , 2003 , 44, 5649-5651	2	54
72	A redox-active reverse donor\(\text{\text{lcceptor}}\) bistable [2]rotaxane. \(\text{Chemical Science}\), 2, 1046-1053	9.4	52
71	A reverse donor-acceptor bistable [2]catenane. <i>Organic Letters</i> , 2008 , 10, 3187-90	6.2	52
70	A Pyrene-Poly(acrylic acid)-Polyrotaxane Supramolecular Binder Network for High-Performance Silicon Negative Electrodes. <i>Advanced Materials</i> , 2019 , 31, e1905048	24	50

(2016-2017)

69	Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 30679-30685	9.5	50
68	Donor-acceptor oligorotaxanes made to order. <i>Chemistry - A European Journal</i> , 2011 , 17, 2107-19	4.8	49
67	Thinking Outside the Cage: Controlling the Extrinsic Porosity and Gas Uptake Properties of Shape-Persistent Molecular Cages in Nanoporous Polymers. <i>Chemistry of Materials</i> , 2015 , 27, 4149-4155	9.6	48
66	Electron Injection from Copper Diimine Sensitizers into TiO2: Structural Effects and Their Implications for Solar Energy Conversion Devices. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9670-84	16.4	47
65	Three-point recognition and selective fluorescence sensing of L-DOPA. <i>Organic Letters</i> , 2004 , 6, 3107-9	6.2	44
64	Lithium-Salt Mediated Synthesis of a Covalent Triazine Framework for Highly Stable Lithium Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16795-16799	16.4	43
63	Prospect for Supramolecular Chemistry in High-Energy-Density Rechargeable Batteries. <i>Joule</i> , 2019 , 3, 662-682	27.8	42
62	Advances in Porous Organic Polymers for Efficient Water Capture. <i>Chemistry - A European Journal</i> , 2019 , 25, 10262-10283	4.8	41
61	Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithium-Metal Batteries. <i>Advanced Materials</i> , 2019 , 31, e1901645	24	39
60	Template-Directed Approach Towards the Realization of Ordered Heterogeneity in Bimetallic Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5071-5076	16.4	37
59	Direct Utilization of Elemental Sulfur in the Synthesis of Microporous Polymers for Natural Gas Sweetening. <i>CheM</i> , 2016 , 1, 482-493	16.2	37
58	Bottom-up Approach for the Synthesis of a Three-Dimensional Nanoporous Graphene Nanoribbon Framework and Its Gas Sorption Properties. <i>Chemistry of Materials</i> , 2015 , 27, 2576-2583	9.6	34
57	Systematic Investigation of the Effect of Polymerization Routes on the Gas-Sorption Properties of Nanoporous Azobenzene Polymers. <i>Chemistry - A European Journal</i> , 2015 , 21, 15320-7	4.8	34
56	Polycatenation under thermodynamic control. Angewandte Chemie - International Edition, 2010, 49, 315	1 16 .4	34
55	Bottom-up synthesis of fully sp2 hybridized three-dimensional microporous graphitic frameworks as metal-free catalysts. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12080-12085	13	33
54	Energy Band-Gap Engineering of Conjugated Microporous Polymers via Acidity-Dependent in Situ Cyclization. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10937-10940	16.4	33
53	A Light-Stimulated Molecular Switch Driven by Radical Radical Interactions in Water. <i>Angewandte Chemie</i> , 2011 , 123, 6914-6920	3.6	33
52	Synthesis of Highly Porous Coordination Polymers with Open Metal Sites for Enhanced Gas Uptake and Separation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26860-26867	9.5	33

51	A bifunctional approach for the preparation of graphene and ionic liquid-based hybrid gels. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 43-48	13	31
50	Covalent Triazine Frameworks Incorporating Charged Polypyrrole Channels for High-Performance LithiumBulfur Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 4185-4193	9.6	29
49	Redox-controlled selective docking in a [2]catenane host. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2466-9	16.4	26
48	Epoxy-Functionalized Porous Organic Polymers via the Diels-Alder Cycloaddition Reaction for Atmospheric Water Capture. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3173-3177	16.4	25
47	Photoinduced Memory Effect in a Redox Controllable Bistable Mechanical Molecular Switch. <i>Angewandte Chemie</i> , 2012 , 124, 1643-1647	3.6	25
46	Three-dimensional architectures incorporating stereoregular donor-acceptor stacks. <i>Chemistry - A European Journal</i> , 2013 , 19, 8457-65	4.8	25
45	Ordered supramolecular gels based on graphene oxide and tetracationic cyclophanes. <i>Advanced Materials</i> , 2014 , 26, 2725-9, 2617	24	24
44	Metal®rganic Frameworks Incorporating Copper-Complexed Rotaxanes. <i>Angewandte Chemie</i> , 2012 , 124, 2202-2205	3.6	21
43	Nanostructured ZnO as a structural template for the growth of ZIF-8 with tunable hierarchical porosity for CO2 conversion. <i>CrystEngComm</i> , 2017 , 19, 4147-4151	3.3	19
42	A sensitive fluorescent chemosensor for anions based on a styryl B oradiazaindacene framework. <i>Tetrahedron Letters</i> , 2007 , 48, 5359-5361	2	19
41	Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries <i>Nature Communications</i> , 2022 , 13, 2575	17.4	19
40	Imprinting Chemical and Responsive Micropatterns into Metal©rganic Frameworks. <i>Angewandte Chemie</i> , 2011 , 123, 290-293	3.6	18
39	In Situ Deprotection of Polymeric Binders for Solution-Processible Sulfide-Based All-Solid-State Batteries. <i>Advanced Materials</i> , 2020 , 32, e2001702	24	18
38	Graphene oxide-templated preferential growth of continuous MOF thin films. <i>CrystEngComm</i> , 2016 , 18, 4013-4017	3.3	17
37	Lithium-Salt Mediated Synthesis of a Covalent Triazine Framework for Highly Stable Lithium Metal Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 16951-16955	3.6	15
36	Bimetallic metal organic frameworks with precisely positioned metal centers for efficient H storage. <i>Chemical Communications</i> , 2018 , 54, 12218-12221	5.8	15
35	A Three-Dimensional Porous Organic Semiconductor Based on Fully sp -Hybridized Graphitic Polymer. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15166-15170	16.4	14
34	Hierarchically Porous Reduced Graphene Oxide Coated with Metal © rganic Framework HKUST-1 for Enhanced Hydrogen Gas Affinity. <i>ACS Applied Nano Materials</i> , 2020 , 3, 985-991	5.6	14

(2015-2017)

33	Transition metal complex directed synthesis of porous cationic polymers for efficient CO2 capture and conversion. <i>Polymer</i> , 2017 , 126, 296-302	3.9	13
32	Highly Efficient Ultrafast Electron Injection from the Singlet MLCT Excited State of Copper(I) Diimine Complexes to TiO2 Nanoparticles. <i>Angewandte Chemie</i> , 2012 , 124, 12883-12887	3.6	12
31	Cation modulation of carbonyldipyrrinone (CDP) fluorescence: emission-ratiometric sensing of calcium. <i>Journal of Materials Chemistry</i> , 2005 , 15, 2908		12
30	Diazapyrenium-based porous cationic polymers for colorimetric amine sensing and capture from CO2 scrubbing conditions. <i>RSC Advances</i> , 2016 , 6, 77406-77409	3.7	12
29	Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22791-22796	16.4	12
28	Edge-Functionalized Graphene Nanoribbon Frameworks for the Capture and Separation of Greenhouse Gases. <i>Macromolecules</i> , 2017 , 50, 523-533	5.5	11
27	Epoxy-Functionalized Porous Organic Polymers via the DielsAlder Cycloaddition Reaction for Atmospheric Water Capture. <i>Angewandte Chemie</i> , 2018 , 130, 3227-3231	3.6	11
26	Stable Solid Electrolyte Interphase Formation Induced by Monoquat-Based Anchoring in Lithium Metal Batteries. <i>ACS Energy Letters</i> , 2021 , 6, 1711-1718	20.1	11
25	Electronic and optical vibrational spectroscopy of molecular transport junctions created by on-wire lithography. <i>Small</i> , 2013 , 9, 1900-3	11	9
24	Polycatenation under Thermodynamic Control. <i>Angewandte Chemie</i> , 2010 , 122, 3219-3224	3.6	8
23	A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH) as Precursor. <i>ACS Applied Materials & Dendrimer</i> (G1-NH) as Precursor. <i>Dendrimer</i> (G1-NH) as Precursor.	9.5	8
22	A Three-Dimensional Porous Organic Semiconductor Based on Fully sp2-Hybridized Graphitic Polymer. <i>Angewandte Chemie</i> , 2020 , 132, 15278-15282	3.6	7
21	Excited state distortions in a charge transfer state of a donor-acceptor [2]rotaxane. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 14135-43	3.6	7
20	COFs Meet Graphene Nanoribbons. <i>CheM</i> , 2020 , 6, 1046-1048	16.2	6
19	An acenaphthopyrrolone-dipicolylamine derivative as a selective and sensitive chemosensor for group IIB cations. <i>Tetrahedron Letters</i> , 2006 , 47, 3689-3691	2	6
18	Nitrogen-Doped Carbons with Hierarchical Porosity via Chemical Blowing Towards Long-Lived Metal-Free Catalysts for Acetylene Hydrochlorination. <i>ChemCatChem</i> , 2020 , 12, 1922-1925	5.2	6
17	Template-Directed Approach Towards the Realization of Ordered Heterogeneity in Bimetallic Metal Drganic Frameworks. <i>Angewandte Chemie</i> , 2017 , 129, 5153-5158	3.6	5
16	Catalyst-Free Synthesis of Porous Graphene Networks as Efficient Sorbents for CO and H. <i>ChemPlusChem</i> , 2015 , 80, 1127-1132	2.8	5

15	Integrated Ring-Chain Design of a New Fluorinated Ether Solvent for High-Voltage Lithium-Metal Batteries <i>Angewandte Chemie - International Edition</i> , 2022 , e202115884	16.4	5
14	The Prospect of Dimensionality in Porous Semiconductors. <i>Chemistry - A European Journal</i> , 2021 , 27, 7489-7501	4.8	4
13	Cyclotetrabenzil-Based Porous Organic Polymers with High Carbon Dioxide Affinity. <i>Organic Materials</i> ,03,	1.9	4
12	Inside Cover: A Light-Stimulated Molecular Switch Driven by Radical Radical Interactions in Water (Angew. Chem. Int. Ed. 30/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6674-6674	16.4	3
11	The Green Lean Amine Machine: Harvesting Electric Power While Capturing Carbon Dioxide from Breath. <i>Advanced Science</i> , 2021 , 8, e2100995	13.6	3
10	Molten Salt Templated Synthesis of Covalent Isocyanurate Frameworks with Tunable Morphology and High CO Uptake Capacity. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 26102-26108	9.5	3
9	Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 22973	3.6	3
8	Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness. <i>Advanced Materials</i> , 2021 , e2106785	24	2
7	Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence. <i>Chemical Science</i> , 2021 , 12, 5275-5285	9.4	2
6	The Power of the Mechanical Bond. <i>CheM</i> , 2018 , 4, 2260-2262	16.2	2
5	Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities. <i>CheM</i> , 2021 , 7, 2385-2394	16.2	2
4	Dyeing Your Hair with Graphene. <i>CheM</i> , 2018 , 4, 661-663	16.2	1
3	One-step anodization-electrophoretic deposition of titanium nanotubes-graphene nanoribbon framework for water oxidation. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 902, 115802	4.1	1
2	Innentitelbild: A Light-Stimulated Molecular Switch Driven by Radical R adical Interactions in Water (Angew. Chem. 30/2011). <i>Angewandte Chemie</i> , 2011 , 123, 6804-6804	3.6	
1	Tailor-made Functional Polymers for Energy Storage and Environmental Applications. <i>Chimia</i> , 2020 , 74, 667-673	1.3	