

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4673804/publications.pdf Version: 2024-02-01

VUE VU

#	Article	IF	CITATIONS
1	Conjugated Molecules "Bridgeâ€i Functional Ligand toward Highly Efficient and Longâ€Term Stable Perovskite Solar Cell. Advanced Functional Materials, 2019, 29, 1808119.	14.9	88
2	Asymmetric thermally activated delayed fluorescence (TADF) emitters with 5,9-dioxa-13 <i>b</i> -boranaphtho[3,2,1- <i>de</i>]anthracene (OBA) as the acceptor and highly efficient blue-emitting OLEDs. Journal of Materials Chemistry C, 2019, 7, 11953-11963.	5.5	58
3	Phosphorescent Iridium(III) Complexes Bearing Fluorinated Aromatic Sulfonyl Group with Nearly Unity Phosphorescent Quantum Yields and Outstanding Electroluminescent Properties. ACS Applied Materials & Interfaces, 2015, 7, 24703-24714.	8.0	57
4	Highly efficient deep-blue organic electroluminescent devices (CIEy â‰^ 0.08) doped with fluorinated 9,9′-bianthracene derivatives (fluorophores). Journal of Materials Chemistry C, 2013, 1, 8117.	5.5	55
5	Ultra-stable CsPbBr ₃ nanocrystals with near-unity photoluminescence quantum yield <i>via</i> postsynthetic surface engineering. Journal of Materials Chemistry A, 2019, 7, 26116-26122.	10.3	50
6	Vacuum Dual-Source Thermal-Deposited Lead-Free Cs ₃ Cu ₂ I ₅ Films with High Photoluminescence Quantum Yield for Deep-Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 52967-52975.	8.0	50
7	Effective blocking of the molecular aggregation of novel truxene-based emitters with spirobifluorene and electron-donating moieties for furnishing highly efficient non-doped blue-emitting OLEDs. Journal of Materials Chemistry C, 2015, 3, 5783-5794.	5.5	41
8	Improvement of light extraction in organic light-emitting diodes using a corrugated microcavity. Optics Express, 2015, 23, 4055.	3.4	36
9	Organic Emitters with a Rigid 9-Phenyl-9-phosphafluorene Oxide Moiety as the Acceptor and Their Thermally Activated Delayed Fluorescence Behavior. ACS Applied Materials & Interfaces, 2019, 11, 27112-27124.	8.0	35
10	Bifunctional π-conjugated ligand assisted stable and efficient perovskite solar cell fabrication <i>via</i> interfacial stitching. Journal of Materials Chemistry A, 2019, 7, 16533-16540.	10.3	29
11	Strategically Formulating Aggregationâ€Induced Emissionâ€Active Phosphorescent Emitters by Restricting the Coordination Skeletal Deformation of Pt(II) Complexes Containing Two Independent Monodentate Ligands. Advanced Optical Materials, 2020, 8, 2000079.	7.3	26
12	Highly efficient green phosphorescent organic light-emitting diodes with low efficiency roll-off based on iridium(<scp>iii</scp>) complexes bearing oxadiazol-substituted amide ligands. Journal of Materials Chemistry C, 2016, 4, 5469-5475.	5.5	25
13	lridium (III) complexes with 5,5-dimethyl-3-(pyridin-2-yl)cyclohex-2-enone ligands as sensitizer for dye-sensitized solar cells. Organic Electronics, 2013, 14, 3297-3305.	2.6	23
14	Fluorinated 9,9′-bianthracene derivatives with twisted intramolecular charge-transfer excited states as blue host materials for high-performance fluorescent electroluminescence. Journal of Materials Chemistry C, 2014, 2, 9375-9384.	5.5	23
15	Isomers of Coumarin-Based Cyclometalated Ir(III) Complexes with Easily Tuned Phosphorescent Color and Features for Highly Efficient Organic Light-Emitting Diodes. Inorganic Chemistry, 2019, 58, 7393-7408.	4.0	23
16	Polyelectrolyte-Mediated Nontoxic AgGa _{<i>x</i>} In _{1–<i>x</i>} S ₂ QDs/Low-Density Lipoprotein Nanoprobe for Selective 3D Fluorescence Imaging of Cancer Stem Cells. ACS Applied Materials & Interfaces, 2019, 11, 9884-9892.	8.0	22
17	Fluorinated anthracene derivatives as deep-blue emitters and host materials for highly efficient organic light-emitting devices. RSC Advances, 2015, 5, 59027-59036.	3.6	21
18	Mechanistic insight into how multidrug resistant Acinetobacter baumannii response regulator AdeR recognizes an intercistronic region. Nucleic Acids Research, 2017, 45, 9773-9787.	14.5	20

Yue Yu

#	Article	IF	CITATIONS
19	Theoretical insight into the deep-blue amplified spontaneous emission of new organic semiconductor molecules. Organic Electronics, 2014, 15, 3144-3153.	2.6	19
20	Realizing improved performance of down-conversion white organic light-emitting diodes by localized surface plasmon resonance effect of Ag nanoparticles. Organic Electronics, 2016, 31, 234-239.	2.6	19
21	Enhancement of amplified spontaneous emission in organic gain media by the metallic film. Organic Electronics, 2014, 15, 2052-2058.	2.6	17
22	Novel phosphorescent polymers containing both ambipolar segments and functionalized Ir ^{III} phosphorescent moieties: synthesis, photophysical, redox, and electrophosphorescence investigation. Journal of Materials Chemistry C, 2014, 2, 9523-9535.	5.5	17
23	High Efficiency Fluorescent Electroluminescence with Extremely Low Efficiency Rollâ€Off Generated by a Donor–Bianthracene–Acceptor Structure: Utilizing Perpendicular Twisted Intramolecular Charge Transfer Excited State. Advanced Optical Materials, 2018, 6, 1800060.	7.3	17
24	Strategy for achieving efficient electroluminescence with reduced efficiency roll-off: enhancement of hot excitons spin mixing and restriction of internal conversion by twisted structure regulation using an anthracene derivative. Journal of Materials Chemistry C, 2019, 7, 5604-5614.	5.5	17
25	Novel Red Phosphorescent Polymers Bearing Both Ambipolar and Functionalized Ir ^{III} Phosphorescent Moieties for Highly Efficient Organic Light-Emitting Diodes. Macromolecular Rapid Communications, 2015, 36, 71-78.	3.9	16
26	Effect of fluorocarbon (trifluoromethyl groups) substitution on blue electroluminescent properties of 9,9â€2-bianthracene derivatives with twisted intramolecular charge-transfer excited states. Dyes and Pigments, 2015, 122, 238-245.	3.7	13
27	RCB-IR Cross Input and Sub-Pixel Upsampling Network for Infrared Image Super-Resolution. Sensors, 2020, 20, 281.	3.8	13
28	Unsymmetric Heteroleptic Ir(III) Complexes with 2-Phenylquinoline and Coumarin-Based Ligand Isomers for Tuning Character of Triplet Excited States and Achieving High Electroluminescent Efficiencies. Inorganic Chemistry, 2020, 59, 12362-12374.	4.0	13
29	Optimizing molecular rigidity and thermally activated delayed fluorescence (TADF) behavior of phosphoryl center I€-conjugated heterocycles-based emitters by tuning chemical features of the tether groups. Chemical Engineering Journal, 2021, 413, 127445.	12.7	13
30	The molecular picture of amplified spontaneous emission of star-shaped functionalized-truxene derivatives. Journal of Materials Chemistry C, 2015, 3, 7004-7013.	5.5	12
31	Suppression of efficiency roll-off in TADF-OLEDs using Ag-island nanostructures with localized surface plasmon resonance effect. Organic Electronics, 2017, 51, 173-179.	2.6	10
32	Complementary Triple-Ligand Engineering Approach to Methylamine Lead Bromide Nanocrystals for High-Performance Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 10508-10516.	8.0	10
33	GPU fast restoration of non-uniform illumination images. Journal of Real-Time Image Processing, 2021, 18, 75-83.	3.5	9
34	Manipulating MLCT transition character with ppy-type four-coordinate organoboron skeleton for highly efficient long-wavelength Ir-based phosphors in organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12650-12660.	5.5	9
35	Effect of diphenylamine substituent on charge-transfer absorption features of the iridium complexes and application in dye-sensitized solar cell. Journal of Organometallic Chemistry, 2015, 775, 55-59.	1.8	8
36	High thermal stability fluorene-based hole-injecting material for organic light-emitting devices. Optical Materials, 2016, 53, 19-23.	3.6	8

Yue Yu

#	Article	IF	CITATIONS
37	Enhanced solid-state photoluminescence and fluorescence spectral behaviors for an ESIPT molecule: An experimental and theoretical investigation. Journal of Molecular Liquids, 2020, 318, 114176.	4.9	7
38	Silafluorene moieties as promising building blocks for constructing wide-energy-gap host materials of blue phosphorescent organic light-emitting devices. Science China Chemistry, 2015, 58, 993-998.	8.2	6
39	A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices. Thin Solid Films, 2015, 589, 852-856.	1.8	6
40	Efficient amplified spontaneous emission based on π-conjugated fluorophore-cored molecules studied by density functional theory. Organic Electronics, 2018, 57, 123-132.	2.6	6
41	Theoretical evidence of low-threshold amplified spontaneous emission in organic emitters: transition density and intramolecular vibrational mode analysis. Physical Chemistry Chemical Physics, 2018, 20, 19515-19524.	2.8	6
42	Inverted with power efficiency over 220ÂlmÂW–1. Nano Energy, 2021, 82, 105660.	16.0	6
43	Panchromatic Image Super-Resolution Via Self Attention-Augmented Wasserstein Generative Adversarial Network. Sensors, 2021, 21, 2158.	3.8	6
44	Naphthyl-functionalized oligophenyls: Photophysical properties, film morphology, and amplified spontaneous emission. Optical Materials, 2016, 54, 37-44.	3.6	5
45	Edge-Aware Superpixel Segmentation with Unsupervised Convolutional Neural Networks. , 2021, , .		5
46	Harvesting the Triplet Excitons of Quasi-Two-Dimensional Perovskite toward Highly Efficient White Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 3674-3681.	4.6	3
47	Ultra-thick inverted green organic light-emitting diodes for high power efficiency over 300 lm/W. Organic Electronics, 2022, 101, 106414.	2.6	2
48	Realization of white organic light-emitting devices using single green emitter by coupled microcavities with two modes. Applied Physics Express, 2015, 8, 022103.	2.4	0