
Craig R. Williams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4673480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nature-Based Citizen Science as a Mechanism to Improve Human Health in Urban Areas. International Journal of Environmental Research and Public Health, 2022, 19, 68.	1.2	4
2	Citizen Science Mosquito Surveillance by Ad Hoc Observation Using the iNaturalist Platform. International Journal of Environmental Research and Public Health, 2022, 19, 6337.	1.2	3
3	Effect of captivity and water salinity on culture-dependent frog skin microbiota and <i>Batrachochytrium dendrobatidis</i> (<i>Bd</i>) infection. Transactions of the Royal Society of South Australia, 2022, 146, 273-294.	0.1	0
4	Past and future epidemic potential of chikungunya virus in Australia. PLoS Neglected Tropical Diseases, 2021, 15, e0009963.	1.3	1
5	Citizen science and smartphone e-entomology enables low-cost upscaling of mosquito surveillance. Science of the Total Environment, 2020, 704, 135349.	3.9	47
6	Estimation of mosquito-borne and sexual transmission of Zika virus in Australia: Risks to blood transfusion safety. PLoS Neglected Tropical Diseases, 2020, 14, e0008438.	1.3	4
7	Salinity Tolerance and Brackish Habitat Utilization in the Common Australian Frog Crinia signifera. Journal of Herpetology, 2020, 54, 161.	0.2	4
8	Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environment International, 2019, 133, 105187.	4.8	83
9	Development of a mechanistic dengue simulation model for Guangzhou. Epidemiology and Infection, 2019, 147, e125.	1.0	3
10	Indiscriminate feeding by an alien population of the spotted-thighed frog (Litoria cyclorhyncha) in southern Australia and potential impacts on native biodiversity. Australian Journal of Zoology, 2019, 67, 59.	0.6	0
11	Dengue control in the context of climate change: Views from health professionals in different geographic regions of China. Journal of Infection and Public Health, 2019, 12, 388-394.	1.9	5
12	Epidemic potential of Zika virus in Australia: implications for blood transfusion safety. Transfusion, 2019, 59, 648-658.	0.8	7
13	Association between malaria incidence and meteorological factors: a multi-location study in China, 2005–2012. Epidemiology and Infection, 2018, 146, 89-99.	1.0	19
14	Evolution of morphology and locomotor performance in anurans: relationships with microhabitat diversification. Journal of Evolutionary Biology, 2018, 31, 371-381.	0.8	41
15	Ross River Virus and the Necessity of Multiscale, Eco-epidemiological Analyses. Journal of Infectious Diseases, 2018, 217, 807-815.	1.9	14
16	Mosquito traps for urban surveillance: collection efficacy and potential for use by citizen scientists. Journal of Vector Ecology, 2018, 43, 98-103.	0.5	20
17	Impact of meteorological factors on hemorrhagic fever with renal syndrome in 19 cities in China, 2005–2014. Science of the Total Environment, 2018, 636, 1249-1256.	3.9	40
18	Experts' Perceptions on China's Capacity to Manage Emerging and Reâ€emerging Zoonotic Diseases in an Era of Climate Change. Zoonoses and Public Health, 2017, 64, 527-536.	0.9	6

#	Article	IF	CITATIONS
19	Some cautions in the use of citizen science: a case study of urban insect collection. Transactions of the Royal Society of South Australia, 2017, 141, 57-69.	0.1	9
20	What role should a scientific society play in communicating information to policy makers?. Transactions of the Royal Society of South Australia, 2017, 141, 1-2.	0.1	0
21	Perceptions of malaria control and prevention in an era of climate change: a cross-sectional survey among CDC staff in China. Malaria Journal, 2017, 16, 136.	0.8	8
22	Health professionals' perceptions of hemorrhagic fever with renal syndrome and climate change in China. Global and Planetary Change, 2017, 152, 12-18.	1.6	7
23	Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005–2014. Environmental Research, 2017, 153, 17-26.	3.7	100
24	Advances in the study of River Murray ecology and the legacy of Keith Forbes Walker (1946â^'2016). Transactions of the Royal Society of South Australia, 2017, 141, 87-91.	0.1	0
25	Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape. PLoS ONE, 2017, 12, e0183106.	1.1	35
26	Public Health Responses to and Challenges for the Control of Dengue Transmission in High-Income Countries: Four Case Studies. PLoS Neglected Tropical Diseases, 2016, 10, e0004943.	1.3	29
27	Perceptions of capacity for infectious disease control and prevention to meet the challenges of dengue fever in the face of climate change: A survey among CDC staff in Guangdong Province, China. Environmental Research, 2016, 148, 295-302.	3.7	31
28	Regional Comparison of Mosquito Bloodmeals in South Australia: Implications for Ross River Virus Ecology. Journal of Medical Entomology, 2016, 53, 902-910.	0.9	20
29	Desiccation survival time for eggs of a widespread and invasive Australian mosquito species, <i>Aedes (Finlaya) notoscriptus</i> (Skuse). Journal of Vector Ecology, 2016, 41, 55-62.	0.5	14
30	Projections of increased and decreased dengue incidence under climate change. Epidemiology and Infection, 2016, 144, 3091-3100.	1.0	24
31	Improving public health intervention for mosquito-borne disease: the value of geovisualization using source of infection and LandScan data. Epidemiology and Infection, 2016, 144, 3108-3119.	1.0	9
32	Differentiation of Aedes aegypti and Aedes notoscriptus (Diptera: Culicidae) eggs using scanning electron microscopy. Arthropod Structure and Development, 2016, 45, 273-280.	0.8	14
33	Climate change and its implications for South Australia: evidence, adaptation, impacts and resilience to change. Transactions of the Royal Society of South Australia, 2015, 139, 1-2.	0.1	2
34	Intraspecific variation in desiccation survival time of <i>Aedes aegypti</i> (L.) mosquito eggs of Australian origin. Journal of Vector Ecology, 2015, 40, 292-300.	0.5	53
35	Infectious Diseases, Urbanization and Climate Change: Challenges in Future China. International Journal of Environmental Research and Public Health, 2015, 12, 11025-11036.	1.2	58
36	The Usual Suspects: Comparison of the Relative Roles of Potential Urban Chikungunya Virus Vectors in Australia. PLoS ONE, 2015, 10, e0134975.	1.1	23

#	Article	IF	CITATIONS
37	Testing the impact of virus importation rates and future climate change on dengue activity in Malaysia using a mechanistic entomology and disease model. Epidemiology and Infection, 2015, 143, 2856-2864.	1.0	11
38	The climate change SA symposium 2013: a synthesis. Transactions of the Royal Society of South Australia, 2015, 139, 3-8.	0.1	1
39	Vector-borne disease in South Australia's future climate. Transactions of the Royal Society of South Australia, 2015, 139, 121-129.	0.1	2
40	Transmission of Haemorrhagic Fever with Renal Syndrome in China and the Role of Climate Factors: A Review. International Journal of Infectious Diseases, 2015, 33, 212-218.	1.5	43
41	Effects of Cohabitation on the Population Performance and Survivorship of the Invasive Mosquito Aedes albopictus and the Resident Mosquito Aedes notoscriptus (Diptera: Culicidae) in Australia. Journal of Medical Entomology, 2015, 52, 375-385.	0.9	9
42	Converting Mosquito Surveillance to Arbovirus Surveillance with Honey-Baited Nucleic Acid Preservation Cards. Vector-Borne and Zoonotic Diseases, 2015, 15, 397-403.	0.6	53
43	Field Worker Evaluation of Dengue Vector Surveillance Methods. Asia-Pacific Journal of Public Health, 2015, 27, 705-714.	0.4	9
44	Determining the spatial autocorrelation of dengue vector populations: influences of mosquito sampling method, covariables, and vector control. Journal of Vector Ecology, 2014, 39, 153-163.	0.5	25
45	Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance. Journal of Vector Ecology, 2014, 39, 48-55.	0.5	24
46	Epidemiology of dengue in a high-income country: a case study in Queensland, Australia. Parasites and Vectors, 2014, 7, 379.	1.0	36
47	Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks. Parasites and Vectors, 2014, 7, 447.	1.0	25
48	A critical review of freshwater crayfish as amphibian predators: Capable consumers of toxic prey?. Toxicon, 2014, 82, 9-17.	0.8	9
49	Functional and physiological resistance of crayfish to amphibian toxins: tetrodotoxin resistance in the white river crayfish (<i>Procambarus acutus</i>). Canadian Journal of Zoology, 2014, 92, 939-945.	0.4	6
50	Using <i>Wolbachia</i> â€based release for suppression of <i>Aedes</i> mosquitoes: insights from genetic data and population simulations. Ecological Applications, 2014, 24, 1226-1234.	1.8	41
51	Predation of two common native frog species (Litoria ewingi and Crinia signifera) by freshwater invertebrates. Australian Journal of Zoology, 2014, 62, 483.	0.6	7
52	Productivity and population density estimates of the dengue vector mosquito <i>Aedes aegypti</i> (<i>Stegomyia aegypti</i>) in Australia. Medical and Veterinary Entomology, 2013, 27, 313-322.	0.7	28
53	Weather-Driven Variation in Dengue Activity in Australia Examined Using a Process-Based Modeling Approach. American Journal of Tropical Medicine and Hygiene, 2013, 88, 65-72.	0.6	25
54	Inter-population mating success in Australian dengue vector mosquitoes: effects of laboratory colonization and implications for the spread of transgenics. Journal of Vector Ecology, 2013, 38, 111-119.	0.5	4

#	Article	IF	CITATIONS
55	Newts are Toxic, but They were Pressured into it: Butch Brodie's Studies of Co-Evolutionary Arms Races. Transactions of the Royal Society of South Australia, 2013, 137, 96-100.	0.1	1
56	Submission on the Draft Murray-Darling Basin Plan. Transactions of the Royal Society of South Australia, 2013, 137, 135-137.	0.1	2
57	The Asian Tiger Mosquito (<i>Aedes Albopictus</i>) Invasion into Australia: A Review of Likely Geographic Range and Changes to Vector-Borne Disease Risk. Transactions of the Royal Society of South Australia, 2012, 136, 128-136.	0.1	9
58	Adult mosquito trap sensitivity for detecting exotic mosquito incursions and eradication: a study using EVS traps and the Australian southern saltmarsh mosquito, Aedes camptorhynchus. Journal of Vector Ecology, 2012, 37, 110-116.	0.5	5
59	Mating, ovariole number and sperm production of the dengue vector mosquito <i>Aedes aegypti</i> (L.) in Australia: broad thermal optima provide the capacity for survival in a changing climate. Physiological Entomology, 2012, 37, 136-144.	0.6	23
60	Larval development rate of the mosquitoes <i>Culex quinquefasciatus</i> and <i>Aedes aegypti</i> (Diptera: Culicidae) varies between clutches: implications for population ecology. Australian Journal of Entomology, 2012, 51, 22-27.	1.1	9
61	Flowering timing prediction in Australian native understorey species (Acrotriche R.Br Ericaceae) using meteorological data. International Journal of Biometeorology, 2012, 56, 95-105.	1.3	2
62	Dengue Vector Surveillance Programs. Asia-Pacific Journal of Public Health, 2011, 23, 827-842.	0.4	26
63	Climate Change and Infectious Diseases in Australia: Future Prospects, Adaptation Options, and Research Priorities. Asia-Pacific Journal of Public Health, 2011, 23, 54S-66S.	0.4	28
64	Floral visitation in the Australian native shrub genus <i>Acrotriche</i> R.Br (Ericaceae): an abundance of ants (Formicidae). Australian Journal of Entomology, 2011, 50, 130-138.	1.1	9
65	Growth and development performance of the ubiquitous urban mosquito <i>Aedes notoscriptus</i> (Diptera: Culicidae) in Australia varies with water type and temperature. Australian Journal of Entomology, 2011, 50, 195-199.	1.1	9
66	Eggs of the Australian saltmarsh mosquito, Aedes camptorhynchus, survive for long periods and hatch in instalments: implications for biosecurity in New Zealand. Medical and Veterinary Entomology, 2011, 25, 70-76.	0.7	12
67	The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Tropical Medicine and International Health, 2010, 15, 1190-1197.	1.0	66
68	The Extinction of Dengue through Natural Vulnerability of Its Vectors. PLoS Neglected Tropical Diseases, 2010, 4, e922.	1.3	35
69	Increased locomotor activity and metabolism of <i>Aedes aegypti</i> infected with a life-shortening strain of <i>Wolbachia pipientis</i> . Journal of Experimental Biology, 2009, 212, 1436-1441.	0.8	97
70	Modelling the ecology of the coastal mosquitoes <i>Aedes vigilax</i> and <i>Aedes camptorhynchus</i> at Port Pirie, South Australia. Medical and Veterinary Entomology, 2009, 23, 85-91.	0.7	27
71	A lethal ovitrapâ€based mass trapping scheme for dengue control in Australia: I. Public acceptability and performance of lethal ovitraps. Medical and Veterinary Entomology, 2009, 23, 295-302.	0.7	44
72	A lethal ovitrapâ€based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito <i>Aedes aegypti</i> . Medical and Veterinary Entomology, 2009, 23, 303-316.	0.7	63

#	Article	IF	CITATIONS
73	Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito <i>Aedes aegypti</i> in Australia. Functional Ecology, 2009, 23, 528-538.	1.7	365
74	Diversity and seasonal succession of coastal mosquitoes (Diptera: Culicidae) in the northern Adelaide region of South Australia. Australian Journal of Entomology, 2009, 48, 107-112.	1.1	19
75	Environmental and entomological factors determining Ross River virus activity in the River Murray Valley of South Australia. Australian and New Zealand Journal of Public Health, 2009, 33, 284-288.	0.8	32
76	Mosquitoes (Diptera: Culicidae) Of the Spencer Gulf Coast of South Australia. Transactions of the Royal Society of South Australia, 2009, 133, 51-56.	0.1	4
77	A Biodegradable Lethal Ovitrap for Control of Container-Breeding Aedes. Journal of the American Mosquito Control Association, 2008, 24, 47-53.	0.2	30
78	Rapid Estimation of <i>Aedes aegypti</i> Population Size Using Simulation Modeling, with a Novel Approach to Calibration and Field Validation. Journal of Medical Entomology, 2008, 45, 1173-1179.	0.9	33
79	Rapid Estimation of Aedes aegypti Population Size Using Simulation Modeling, with a Novel Approach to Calibration and Field Validation. Journal of Medical Entomology, 2008, 45, 1173-1179.	0.9	35
80	Population-Attributable Risk Estimates for Risk Factors Associated with <i>Campylobacter</i> Infection, Australia. Emerging Infectious Diseases, 2008, 14, 895-901.	2.0	84
81	The Allee effect in site choice behaviour of egg-laying dengue vector mosquitoes. Tropical Biomedicine, 2008, 25, 140-4.	0.2	12
82	Impact of a Bifenthrin-Treated Lethal Ovitrap on <i>Aedes aegypti</i> Oviposition and Mortality in North Queensland, Australia. Journal of Medical Entomology, 2007, 44, 256-262.	0.9	36
83	<i>Aedes aegypti</i> Population Sampling Using BG-Sentinel Traps in North Queensland Australia: Statistical Considerations for Trap Deployment and Sampling Strategy. Journal of Medical Entomology, 2007, 44, 345-350.	0.9	54
84	Predicting the age of mosquitoes using transcriptional profiles. Nature Protocols, 2007, 2, 2796-2806.	5.5	38
85	FIELD EFFICACY OF THE BG-SENTINEL COMPARED WITH CDC BACKPACK ASPIRATORS AND CO2-BAITED EVS TRAPS FOR COLLECTION OF ADULT AEDES AEGYPTI IN CAIRNS, QUEENSLAND, AUSTRALIA. Journal of the American Mosquito Control Association, 2006, 22, 296-300.	0.2	144
86	Mosquito repellents in frog skin. Biology Letters, 2006, 2, 242-245.	1.0	24
87	Geographic Variation in Attraction to Human Odor Compounds by Aedes aegypti Mosquitoes (Diptera:) Tj ETQq1	1,0,78432 0.9	14.rgBT /O
88	FIELD EVALUATION OF NEW MOUNTAIN SANDALWOOD MOSQUITO STICKS®AND NEW MOUNTAIN SANDALWOOD BOTANICAL REPELLENT AGAINST MOSQUITOES IN NORTH QUEENSLAND, AUSTRALIA. Journal of the American Mosquito Control Association, 2006, 22, 158-160.	0.2	17
89	LABORATORY AND FIELD ASSESSMENT OF SOME KAIROMONE BLENDS FOR HOST-SEEKING AEDES AEGYPTI1. Journal of the American Mosquito Control Association, 2006, 22, 641-647.	0.2	41
90	OPTIMIZING OVITRAP USE FOR AEDES AEGYPTI IN CAIRNS, QUEENSLAND, AUSTRALIA: EFFECTS OF SOME ABIOTIC FACTORS ON FIELD EFFICACY. Journal of the American Mosquito Control Association, 2006, 22, 635-640.	0.2	27

#	Article	IF	CITATIONS
91	Discovery of a Widespread Infestation of Aedes albopictus in the Torres Strait, Australia. Journal of the American Mosquito Control Association, 2006, 22, 358-365.	0.2	104
92	Frequency of infectious gastrointestinal illness in Australia, 2002: regional, seasonal and demographic variation. Epidemiology and Infection, 2006, 134, 111-118.	1.0	97
93	The use of transcriptional profiles to predict adult mosquito age under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18060-18065.	3.3	99
94	Timing of host-seeking behaviour of the mosquitoes Anopheles annulipes sensu lato Walker and Coquillettidia linealis (Skuse) (Diptera: Culicidae) in the Murray River Valley, South Australia. Australian Journal of Entomology, 2005, 44, 110-112.	1.1	2
95	Potential distribution of the Asian disease vector Culex gelidus Theobald (Diptera: Culicidae) in Australia and New Zealand: a prediction based on climate suitability. Australian Journal of Entomology, 2005, 44, 425-430.	1.1	14
96	Mark-release-recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Medical and Veterinary Entomology, 2005, 19, 451-457.	0.7	159
97	Daily patterns of locomotor and sugarâ€feeding activity of the mosquito <i>Culex annulirostris</i> from geographically isolated populations. Physiological Entomology, 2005, 30, 309-316.	0.6	12
98	Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Australian Veterinary Journal, 2004, 82, 434-439.	0.5	322
99	Intraspecific variation in odor-mediated host preference of the mosquito Culex annulirostris. Journal of Chemical Ecology, 2003, 29, 1889-1903.	0.9	34
100	Development and Evaluation of a Species Diagnostic Polymerase Chain Reaction-Restriction Fragment-Length Polymorphism Procedure for Cryptic Members of theCulex sitiens(Diptera: Culicidae) Subgroup in Australia and the Southwest Pacific. Journal of Medical Entomology, 2002, 39, 362-369.	0.9	22
101	Parasitism of mosquitoes (Diptera: Culicidae) by larval mites (Acari: Parasitengona) in Adelaide, South Australia. Australian Journal of Entomology, 2002, 41, 161-163.	1.1	14
102	Antipredator Mechanisms of Australian Frogs. Journal of Herpetology, 2000, 34, 431.	0.2	61
103	Spatial heterogeneity in oviposition preference of the mosquito Aedes notoscriptus (Skuse) (Diptera:) Tj ETQq1 1	0,784314 1.1	rgBT /Overl
104	Evolution of Aposematic Behavior and Coloration in the Australian Frog Genus Uperoleia. Journal of Herpetology, 1998, 32, 136.	0.2	13