Chengyi Song

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4673391/chengyi-song-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 4,769 104 32 h-index g-index citations papers 6,168 5.65 107 10.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
104	Thickness dependent thermal performance of a poly(3,4-ethylenedioxythiophene) thin film synthesized an electrochemical approach <i>RSC Advances</i> , 2022 , 12, 1897-1903	3.7	1
103	Structural evolution of Pt-based oxygen reduction reaction electrocatalysts. <i>Chinese Journal of Catalysis</i> , 2022 , 43, 47-58	11.3	2
102	All-in-one polymer sponge composite 3D evaporators for simultaneous high-flux solar-thermal desalination and electricity generation. <i>Nano Energy</i> , 2022 , 93, 106882	17.1	5
101	Crumpled particles of ethanol-wetted graphene oxide for medium-temperature nanofluidic solar-thermal energy harvesting. <i>Carbon</i> , 2022 , 186, 492-500	10.4	2
100	Noncontact human-machine interaction based on hand-responsive infrared structural color <i>Nature Communications</i> , 2022 , 13, 1446	17.4	4
99	Synthesis of Liquid Gallium@Reduced Graphene Oxide Core-Shell Nanoparticles with Enhanced Photoacoustic and Photothermal Performance <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	9
98	A bottom-up approach to generate isotropic liquid metal network in polymer-enabled 3D thermal management. <i>Chemical Engineering Journal</i> , 2022 , 439, 135674	14.7	2
97	Silicone oil nanofluids dispersed with mesoporous crumpled graphene for medium-temperature direct absorption solar-thermal energy harvesting. <i>Solar Energy Materials and Solar Cells</i> , 2022 , 243, 111	1 94	2
96	Paste-Like Recyclable Ga Liquid Metal Phase Change Composites Loaded with Miscible Ga2O3 particles for Transient Cooling of Portable Electronics. <i>Applied Thermal Engineering</i> , 2022 , 118766	5.8	О
95	Research on a reference signal optimisation algorithm for indoor Bluetooth positioning. <i>Applied Mathematics and Nonlinear Sciences</i> , 2021 , 6, 525-534	4	2
94	Pyroelectric Synthesis of the Site-Specific Au-ZnO Nanorod Array. <i>ChemistrySelect</i> , 2021 , 6, 11224-11230	0 1.8	О
93	Rapid one-step scalable microwave synthesis of TiCT MXene. <i>Chemical Communications</i> , 2021 , 57, 12611	- 512 61	43
92	Enhancement of infrared emissivity by the hierarchical microstructures from the wing scales of butterfly Rapala dioetas. <i>APL Photonics</i> , 2021 , 6, 036101	5.2	2
91	Human hand as a powerless and multiplexed infrared light source for information decryption and complex signal generation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
90	Ethylene glycol nanofluids dispersed with monolayer graphene oxide nanosheet for high-performance subzero cold thermal energy storage <i>RSC Advances</i> , 2021 , 11, 30495-30502	3.7	1
89	Atomistic Imaging of Competition between Surface Diffusion and Phase Transition during the Intermetallic Formation of Faceted Particles. <i>ACS Nano</i> , 2021 , 15, 5284-5293	16.7	4
88	Heterostructure of ZnO Nanosheets/Zn with a Highly Enhanced Edge Surface for Efficient CO Electrochemical Reduction to CO. <i>ACS Applied Materials & Description of Co. ACS Applied Materials & Descri</i>	9.5	8

(2020-2021)

87	Design of Highly Durable Core-Shell Catalysts by Controlling Shell Distribution Guided by In-Situ Corrosion Study. <i>Advanced Materials</i> , 2021 , 33, e2101511	24	3	
86	Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal Linker. <i>Advanced Materials</i> , 2021 , 33, e2103104	24	18	
85	Manipulation of Electron Transfer between Pd and TiO for Improved Electrocatalytic Hydrogen Evolution Reaction Performance. <i>ACS Applied Materials & Electrocatalytic Materials & Material</i>	9.5	6	
84	Boosting Oxygen and Peroxide Reduction Reactions on PdCu Intermetallic Cubes. <i>ChemElectroChem</i> , 2020 , 7, 2614-2620	4.3	4	
83	Pyroelectric synthesis of Au/Pt bimetallic nanoparticles-BaTiO hybrid nanomaterials <i>RSC Advances</i> , 2020 , 10, 22616-22621	3.7	3	
82	Solar-driven interfacial desalination for simultaneous freshwater and salt generation. <i>Desalination</i> , 2020 , 484, 114423	10.3	68	
81	Hopper-Shaped Crystals: Self-Assembly in Hopper-Shaped Crystals (Adv. Funct. Mater. 26/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070170	15.6		
80	Bioinspired Temperature Regulation in Interfacial Evaporation. <i>Advanced Functional Materials</i> , 2020 , 30, 1910481	15.6	12	
79	Light-driven motion of water droplets with directional control on nanostructured surfaces. <i>Nanoscale</i> , 2020 , 12, 4295-4301	7.7	14	
78	Self-dispersible graphene quantum dots in ethylene glycol for direct absorption-based medium-temperature solar-thermal harvesting <i>RSC Advances</i> , 2020 , 10, 45028-45036	3.7	4	
77	Butterfly Wing Inspired High Performance Infrared Detection with Spectral Selectivity. <i>Advanced Optical Materials</i> , 2020 , 8, 1901647	8.1	3	
76	Self-Assembly in Hopper-Shaped Crystals. <i>Advanced Functional Materials</i> , 2020 , 30, 1908108	15.6	5	
75	Light-Driven Nanodroplet Generation Using Porous Membranes. <i>Nano Letters</i> , 2020 , 20, 7874-7881	11.5	1	
74	All-Day Freshwater Harvesting through Combined Solar-Driven Interfacial Desalination and Passive Radiative Cooling. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 47612-47622	9.5	15	
73	Erythritol impregnated within surface-roughened hydrophilic metal foam for medium-temperature solar-thermal energy harvesting. <i>Energy Conversion and Management</i> , 2020 , 222, 113241	10.6	11	
72	Reconsidering the Benchmarking Evaluation of Catalytic Activity in Oxygen Reduction Reaction. <i>IScience</i> , 2020 , 23, 101532	6.1	18	
71	Transparent nanofluids with high thermal conductivity for improved convective thermal management of optoelectronic devices. <i>Experimental Heat Transfer</i> , 2020 , 1-13	2.4	4	
70	Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 20970-20978	13	26	

69	Self-powered infrared detection using a graphene oxide film. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 9248-9255	13	4
68	Electrically Driven Interfacial Evaporation for High-Efficiency Steam Generation and Sterilization. <i>ACS Omega</i> , 2019 , 4, 16603-16611	3.9	11
67	Patterned Surfaces for Solar-Driven Interfacial Evaporation. <i>ACS Applied Materials & Description</i> , 11, 7584-7590	9.5	36
66	A Non-Pt Electronically Coupled Semiconductor Heterojunction for Enhanced Oxygen Reduction Electrocatalytic Property. <i>ChemistrySelect</i> , 2019 , 4, 5264-5268	1.8	2
65	High-Efficiency Superheated Steam Generation for Portable Sterilization under Ambient Pressure and Low Solar Flux. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 18466-18474	9.5	48
64	Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials. <i>Energy and Environmental Science</i> , 2019 , 12, 1613-1621	35.4	74
63	Self-propelled rotation of paper-based Leidenfrost rotor. <i>Applied Physics Letters</i> , 2019 , 114, 113703	3.4	6
62	Butterfly Wing Hears Sound: Acoustic Detection Using Biophotonic Nanostructure. <i>Nano Letters</i> , 2019 , 19, 2627-2633	11.5	17
61	Solar-driven high-temperature steam generation at ambient pressure. <i>Progress in Natural Science: Materials International</i> , 2019 , 29, 10-15	3.6	11
60	Ethylene glycol-based solar-thermal fluids dispersed with reduced graphene oxide <i>RSC Advances</i> , 2019 , 9, 10282-10288	3.7	9
59	A perspective on bio-inspired interfacial systems for solar clean-water generation. <i>MRS Communications</i> , 2019 , 9, 3-13	2.7	6
58	Strong Electronic Interaction of Amorphous Fe2O3 Nanosheets with Single-Atom Pt toward Enhanced Carbon Monoxide Oxidation. <i>Advanced Functional Materials</i> , 2019 , 29, 1904278	15.6	32
57	Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface. <i>ACS Omega</i> , 2019 , 4, 17615-17622	3.9	7
56	In Situ Transmission Electron Microscopy Study of Nanocrystal Formation for Electrocatalysis. <i>ChemNanoMat</i> , 2019 , 5, 1439-1455	3.5	7
55	Optical nanofluids for direct absorption-based solar-thermal energy harvesting at medium-to-high temperatures. <i>Current Opinion in Chemical Engineering</i> , 2019 , 25, 51-56	5.4	8
54	Three-Dimensional Porous Solar-Driven Interfacial Evaporator for High-Efficiency Steam Generation under Low Solar Flux. <i>ACS Omega</i> , 2019 , 4, 3546-3555	3.9	39
53	An open thermo-electrochemical cell enabled by interfacial evaporation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6514-6521	13	27
52	Bubble-Enabled Underwater Motion of a Light-Driven Motor. <i>Small</i> , 2019 , 15, e1804959	11	11

(2018-2019)

51	Pyroelectric Synthesis of Metal B aTiO3 Hybrid Nanoparticles with Enhanced Pyrocatalytic Performance. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2602-2609	8.3	16
50	Form-Stable Solar Thermal Heat Packs Prepared by Impregnating Phase-Changing Materials within Carbon-Coated Copper Foams. <i>ACS Applied Materials & English States</i> , 2019, 11, 3417-3427	9.5	49
49	Plasmonic-Enhanced Oxygen Reduction Reaction of Silver/Graphene Electrocatalysts. <i>Nano Letters</i> , 2019 , 19, 1371-1378	11.5	49
48	Nanoscale kinetics of asymmetrical corrosion in core-shell nanoparticles. <i>Nature Communications</i> , 2018 , 9, 1011	17.4	64
47	Introduction to Thermal Properties of Materials 2018 , 1-23		
46	Bioinspired Materials in Evaporation 2018 , 73-98		1
45	Facets Matching of Platinum and Ferric Oxide in Highly Efficient Catalyst Design for Low-Temperature CO Oxidation. <i>ACS Applied Materials & Design For Action Services</i> (2018), 10, 15322-15327	9.5	8
44	AgPO electrocatalyst for oxygen reduction reaction: enhancement from positive charge <i>RSC Advances</i> , 2018 , 8, 5382-5387	3.7	3
43	Crumpled graphene ball-based broadband solar absorbers. <i>Nanoscale</i> , 2018 , 10, 6306-6312	7.7	31
42	Neighboring Pt Atom Sites in an Ultrathin FePt Nanosheet for the Efficient and Highly CO-Tolerant Oxygen Reduction Reaction. <i>Nano Letters</i> , 2018 , 18, 5905-5912	11.5	58
41	Coupling Interface Constructions of MoS /Fe Ni S Heterostructures for Efficient Electrochemical Water Splitting. <i>Advanced Materials</i> , 2018 , 30, e1803151	24	163
40	Bioinspired Infrared Sensing Materials and Systems. <i>Advanced Materials</i> , 2018 , 30, e1707632	24	23
39	Clean water generation with switchable dispersion of multifunctional Fe3O4-reduced graphene oxide particles. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 422-429	3.6	18
38	Photothermally Enabled Pyro-Catalysis of a BaTiO Nanoparticle Composite Membrane at the Liquid/Air Interface. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 21246-21253	9.5	27
37	Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings. <i>Nanoscale</i> , 2018 , 10, 533-537	7.7	7
36	Hydrogen evolution from silicon nanowire surfaces <i>RSC Advances</i> , 2018 , 8, 41657-41662	3.7	1
35	Temperature effect and thermal impact in lithium-ion batteries: A review. <i>Progress in Natural Science: Materials International</i> , 2018 , 28, 653-666	3.6	282
34	Solar-driven interfacial evaporation. <i>Nature Energy</i> , 2018 , 3, 1031-1041	62.3	715

33	Bioinspired Color Change through Guided Reflection. Advanced Optical Materials, 2018, 6, 1800464	8.1	O
32	In Situ Vertical Growth of FeNi Layered Double-Hydroxide Arrays on FeNi Alloy Foil: Interfacial Layer Enhanced Electrocatalyst with Small Overpotential for Oxygen Evolution Reaction. <i>ACS Energy Letters</i> , 2018 , 3, 2357-2365	20.1	90
31	Waste heat recovery in an oscillating heat pipe using interfacial electrical double layers. <i>Applied Physics Letters</i> , 2018 , 112, 243903	3.4	5
30	Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16359-16368	13	127
29	Enhancing the Photocatalytic Hydrogen Evolution Performance of a Metal/Semiconductor Catalyst through Modulation of the Schottky Barrier Height by Controlling the Orientation of the Interface. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12494-12500	9.5	33
28	Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment. <i>Advanced Materials</i> , 2017 , 29, 1703460	24	74
27	Vapor-Enabled Propulsion for Plasmonic Photothermal Motor at the Liquid/Air Interface. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12362-12365	16.4	29
26	Plasmonic Chiral Materials 2017 , 51-84		
25	Floating rGO-based black membranes for solar driven sterilization. <i>Nanoscale</i> , 2017 , 9, 19384-19389	7.7	68
24	Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage. <i>Nature Communications</i> , 2017 , 8, 1478	17.4	101
24		17.4 3.3	101
	Communications, 2017, 8, 1478 Ternary PtPdAg alloy nanoflowers for oxygen reduction reaction electrocatalysis. CrystEngComm,		
23	Communications, 2017, 8, 1478 Ternary PtPdAg alloy nanoflowers for oxygen reduction reaction electrocatalysis. CrystEngComm, 2017, 19, 6964-6971 Controllable assembly of Pd nanosheets: a solution for 2D materials storage. CrystEngComm, 2017,	3.3	18
23	Communications, 2017, 8, 1478 Ternary PtBdAg alloy nanoflowers for oxygen reduction reaction electrocatalysis. CrystEngComm, 2017, 19, 6964-6971 Controllable assembly of Pd nanosheets: a solution for 2D materials storage. CrystEngComm, 2017, 19, 3439-3444 Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted	3.3	18
23 22 21	Ternary PtBdAg alloy nanoflowers for oxygen reduction reaction electrocatalysis. <i>CrystEngComm</i> , 2017 , 19, 6964-6971 Controllable assembly of Pd nanosheets: a solution for 2D materials storage. <i>CrystEngComm</i> , 2017 , 19, 3439-3444 Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation. <i>ACS Applied Materials & Driven Solution</i> , 8, 23412-8 In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials	3·3 3·3 9·5	18 10 109
23 22 21 20	Ternary PtBdAg alloy nanoflowers for oxygen reduction reaction electrocatalysis. <i>CrystEngComm</i> , 2017, 19, 6964-6971 Controllable assembly of Pd nanosheets: a solution for 2D materials storage. <i>CrystEngComm</i> , 2017, 19, 3439-3444 Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation. <i>ACS Applied Materials & Driven Solar S</i>	3·3 3·3 9·5	18 10 109 88
23 22 21 20	Ternary PtBdBg alloy nanoflowers for oxygen reduction reaction electrocatalysis. <i>CrystEngComm</i> , 2017, 19, 6964-6971 Controllable assembly of Pd nanosheets: a solution for 2D materials storage. <i>CrystEngComm</i> , 2017, 19, 3439-3444 Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation. <i>ACS Applied Materials & Driven by Interfaces</i> , 2016, 8, 23412-8 In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research. <i>Advanced Materials</i> , 2016, 28, 9686-9712 Substrateless Welding of Self-Assembled Silver Nanowires at Air/Water Interface. <i>ACS Applied Materials & Driven Base Materials</i> , 2016, 8, 20483-90 Stably dispersed high-temperature Fe3O4/silicone-oil nanofluids for direct solar thermal energy	3·3 3·3 9·5 24 9·5	18 10 109 88 32

LIST OF PUBLICATIONS

15	Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics. <i>Applied Thermal Engineering</i> , 2016 , 95, 445-453	5.8	33
14	Flexible heat pipes with integrated bioinspired design. <i>Progress in Natural Science: Materials International</i> , 2015 , 25, 51-57	3.6	31
13	A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. <i>Advanced Materials</i> , 2015 , 27, 2768-74	24	561
12	Bioinspired engineering of thermal materials. <i>Advanced Materials</i> , 2015 , 27, 428-63	24	178
11	The impact of surface chemistry on the performance of localized solar-driven evaporation system. <i>Scientific Reports</i> , 2015 , 5, 13600	4.9	117
10	Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers. <i>Scientific Reports</i> , 2015 , 5, 17276	4.9	50
9	Infrared detection based on localized modification of Morpho butterfly wings. <i>Advanced Materials</i> , 2015 , 27, 1077-82	24	74
8	Rapid charging of thermal energy storage materials through plasmonic heating. <i>Scientific Reports</i> , 2014 , 4, 6246	4.9	57
7	Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. <i>Small</i> , 2014 , 10, 3234-9	11	313
6	Vertical segregation in the self-assembly of nanoparticles at the liquid/air interface. <i>Nanoscale</i> , 2014 , 6, 14662-6	7.7	17
5	Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface. <i>Scientific Reports</i> , 2014 , 4, 4303	4.9	21
4	Evaporation: Bio-Inspired Evaporation Through Plasmonic Film of Nanoparticles at the Air W ater Interface (Small 16/2014). <i>Small</i> , 2014 , 10, 3233-3233	11	12
3	Stability of single-atom catalysts for electrocatalysis. <i>Journal of Materials Chemistry A</i> ,	13	7
2	Gallium-Based Liquid Metal Composites with Enhanced Thermal and Electrical Performance Enabled by Structural Engineering of Filler. <i>Advanced Engineering Materials</i> ,2101678	3.5	Ο
1	Construction of 3D Conductive Network in Liquid Gallium with Enhanced Thermal and Electrical Performance. <i>Advanced Materials Technologies</i> ,2100970	6.8	3