Sandra Merscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4673291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptive and maladaptive roles of lipid droplets in health and disease. American Journal of Physiology - Cell Physiology, 2022, 322, C468-C481.	4.6	13
2	Sphingomyelin phosphodiesterase acid like 3B (SMPDL3b) regulates Perilipin5 (PLIN5) expression and mediates lipid droplet formation. Genes and Diseases, 2022, 9, 1397-1400.	3.4	4
3	Glucose- and Non-Glucose-Induced Mitochondrial Dysfunction in Diabetic Kidney Disease. Biomolecules, 2022, 12, 351.	4.0	13
4	Implications of Sphingolipid Metabolites in Kidney Diseases. International Journal of Molecular Sciences, 2022, 23, 4244.	4.1	13
5	Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine, 2021, 63, 103162.	6.1	27
6	APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis. Human Molecular Genetics, 2021, 30, 182-197.	2.9	27
7	Noninvasive assessment of radiation-induced renal injury in mice. International Journal of Radiation Biology, 2021, 97, 664-674.	1.8	5
8	Nicotine, smoking, podocytes, and diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2021, 320, F442-F453.	2.7	13
9	New insights into renal lipid dysmetabolism in diabetic kidney disease. World Journal of Diabetes, 2021, 12, 524-540.	3.5	37
10	DACH1 as a multifaceted and potentially druggable susceptibility factor for kidney disease. Journal of Clinical Investigation, 2021, 131, .	8.2	1
11	Use of Lipid-Modifying Agents for the Treatment of Glomerular Diseases. Journal of Personalized Medicine, 2021, 11, 820.	2.5	6
12	Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nature Communications, 2021, 12, 4662.	12.8	24
13	Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 9-31.	6.1	24
14	Lipid Metabolism Gets in a JAML during Kidney Disease. Cell Metabolism, 2020, 32, 903-905.	16.2	5
15	The Vicious Cycle of Renal Lipotoxicity and Mitochondrial Dysfunction. Frontiers in Physiology, 2020, 11, 732.	2.8	29
16	Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney International, 2020, 98, 1275-1285.	5.2	27
17	Lipid deposition and metaflammation in diabetic kidney disease. Current Opinion in Pharmacology, 2020, 55, 60-72.	3.5	14
18	Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS. , 2020, 1, 56-69.		9

Role of Sphingolipid Signaling in Glomerular Diseases: Focus on DKD and FSGS. , 2020, 1, 56-69. 18

SANDRA MERSCHER

#	Article	IF	CITATIONS
19	Regulation of the amount of ceramide-1-phosphate synthesized in differentiated human podocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158517.	2.4	26
20	Identification of glomerular and podocyte-specific genes and pathways activated by sera of patients with focal segmental glomerulosclerosis. PLoS ONE, 2019, 14, e0222948.	2.5	18
21	Detection and Quantification of Lipid Droplets in Differentiated Human Podocytes. Methods in Molecular Biology, 2019, 1996, 199-206.	0.9	8
22	APOL1 renal risk variants promote cholesterol accumulation in tissues and cultured macrophages from APOL1 transgenic mice. PLoS ONE, 2019, 14, e0211559.	2.5	39
23	ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. Journal of Clinical Investigation, 2019, 129, 3387-3400.	8.2	103
24	Editorial: Molecular Mechanisms of Proteinuria. Frontiers in Medicine, 2018, 5, 300.	2.6	1
25	Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney International, 2018, 94, 1151-1159.	5.2	56
26	Abstract 4161: Protecting Sphingomyelin Phosphodiesterase Acid Like 3B (SMPDL3b) enhances kidney function and reduces concurrent chemoradiotherapy-induced nephrotoxicity. , 2018, , .		0
27	Nephrin Contributes to Insulin Secretion and Affects Mammalian Target of Rapamycin Signaling Independently of Insulin Receptor. Journal of the American Society of Nephrology: JASN, 2016, 27, 1029-1041.	6.1	17
28	Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. Journal of Clinical Investigation, 2016, 126, 3336-3350.	8.2	123
29	Sphingomyelinase-Like Phosphodiesterase 3b Expression Levels Determine Podocyte Injury Phenotypes in Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 133-147.	6.1	119
30	Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nature Medicine, 2015, 21, 601-609.	30.7	100
31	Metabolism, Energetics, and Lipid Biology in the Podocyte ââ,¬â€œ Cellular Cholesterol-Mediated Glomerular Injury. Frontiers in Endocrinology, 2014, 5, 169.	3.5	32
32	Podocyte Pathology and Nephropathy ââ,¬â€œ Sphingolipids in Glomerular Diseases. Frontiers in Endocrinology, 2014, 5, 127.	3.5	83
33	Lipid biology of the podocyte—new perspectives offer new opportunities. Nature Reviews Nephrology, 2014, 10, 379-388.	9.6	91
34	Behavior of mice with mutations in the conserved region deleted in velocardiofacial/DiGeorge syndrome. Neurogenetics, 2006, 7, 247-257.	1.4	70
35	TBX1 Is Responsible for Cardiovascular Defects in Velo-Cardio-Facial/DiGeorge Syndrome. Cell, 2001, 104, 619-629.	28.9	884
36	A 5.5-Mb High-Resolution Integrated Map of Distal 11q13. Genomics, 1997, 39, 340-347.	2.9	8

#	Article	IF	CITATIONS
37	Identification of New Translocation Breakpoints at 12q13 in Lipomas. Genomics, 1997, 46, 70-77.	2.9	35
38	Mapping of the 12q12-q22 Region with Respect to Tumor Translocation Breakpoints. Genomics, 1994, 22, 512-518.	2.9	34