
Simon Roussanaly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4673079/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e555" altimg="si168.svg"> <mml:msub><mml:mrow><mml:mi mathvariant="normal">CO</mml:mi </mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>capture? A techno-economic investigation on the cost limits of pressureâ€"vacuum swing adsorption.</mml:msub>	ıb>≺/mml:	42 math>
2	Liquid hydrogen as prospective energy carrier: A brief review and discussion of underlying assumptions applied in value chain analysis. Renewable and Sustainable Energy Reviews, 2022, 154, 111772.	8.2	48
3	Deploying a shipping infrastructure to enable carbon capture and storage from Norwegian industries. Journal of Cleaner Production, 2022, 333, 129586.	4.6	10
4	CO2 Capture from IGCC by Low-Temperature Synthesis Gas Separation. Energies, 2022, 15, 515.	1.6	4
5	CCUS scenarios for the cement industry: Is CO2 utilization feasible?. Journal of CO2 Utilization, 2022, 61, 102015.	3.3	33
6	The role of energy supply in abatement cost curves for CO2 capture from process industry – A case study of a Swedish refinery. Applied Energy, 2022, 319, 119273.	5.1	7
7	Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas. Separation and Purification Technology, 2021, 256, 117832.	3.9	64
8	Techno-Economic Analyses of the CaO/CaCO3 Post-Combustion CO2 Capture From NGCC Power Plants. Frontiers in Chemical Engineering, 2021, 2, .	1.3	6
9	Towards improved cost evaluation of Carbon Capture and Storage from industry. International Journal of Greenhouse Gas Control, 2021, 106, 103263.	2.3	72
10	At what Pressure Shall CO2 Be Transported by Ship? An in-Depth Cost Comparison of 7 and 15 Barg Shipping. Energies, 2021, 14, 5635.	1.6	22
11	An integrated analysis of carbon capture and storage strategies for power and industry in Europe. Journal of Cleaner Production, 2021, 329, 129427.	4.6	12
12	Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC. Frontiers of Chemical Science and Engineering, 2020, 14, 436-452.	2.3	17
13	Large-scale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers. International Journal of Hydrogen Energy, 2020, 45, 32865-32883.	3.8	118
14	Uncertainty analysis in the techno-economic assessment of CO2 capture and storage technologies. Critical review and guidelines for use. International Journal of Greenhouse Gas Control, 2020, 100, 103113.	2.3	42
15	Optimal design and cost of ship-based CO2 transport under uncertainties and fluctuations. International Journal of Greenhouse Gas Control, 2020, 103, 103190.	2.3	13
16	Impact of Uncertainties on the Design and Cost of CCS From a Waste-to-Energy Plant. Frontiers in Energy Research, 2020, 8, .	1.2	22
17	CO2 capture from waste-to-energy plants: Techno-economic assessment of novel integration concepts of calcium looping technology. Resources, Conservation and Recycling, 2020, 162, 104973.	5.3	50
18	Techno-economic analyses of CO2 liquefaction: Impact of product pressure and impurities. International Journal of Refrigeration, 2019, 103, 301-315.	1.8	45

SIMON ROUSSANALY

#	Article	IF	CITATIONS
19	Profiting from CCS innovations: A study to measure potential value creation from CCS research and development. International Journal of Greenhouse Gas Control, 2019, 83, 208-215.	2.3	20
20	Comparison of Technologies for CO2 Capture from Cement Production—Part 1: Technical Evaluation. Energies, 2019, 12, 559.	1.6	137
21	Calculating CO ₂ avoidance costs of Carbon Capture and Storage from industry. Carbon Management, 2019, 10, 105-112.	1.2	32
22	Comparison of Technologies for CO2 Capture from Cement Production—Part 2: Cost Analysis. Energies, 2019, 12, 542.	1.6	135
23	Best practices and recent advances in CCS cost engineering and economic analysis. International Journal of Greenhouse Gas Control, 2019, 83, 91-104.	2.3	71
24	A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO ₂ capture. Sustainable Energy and Fuels, 2018, 2, 1225-1243.	2.5	32
25	Cost-optimal CO 2 capture ratio for membrane-based capture from different CO 2 sources. Chemical Engineering Journal, 2017, 327, 618-628.	6.6	59
26	A techno-economic case study of CO2 capture, transport and storage chain from a cement plant in Norway. Journal of Cleaner Production, 2017, 144, 523-539.	4.6	94
27	Techno-economic evaluation of CO 2 transport from a lignite-fired IGCC plant in the Czech Republic. International Journal of Greenhouse Gas Control, 2017, 65, 235-250.	2.3	16
28	A Comparison of Post-combustion Capture Technologies for the NGCC. Energy Procedia, 2017, 114, 2631-2641.	1.8	7
29	Techno-economic Analysis of MEA CO2 Capture from a Cement Kiln – Impact of Steam Supply Scenario. Energy Procedia, 2017, 114, 6229-6239.	1.8	58
30	CO2 Capture in Natural Gas Production by Adsorption Processes. Energy Procedia, 2017, 114, 2259-2264.	1.8	40
31	Techno-economic evaluation of the effects of impurities on conditioning and transport of CO 2 by pipeline. International Journal of Greenhouse Gas Control, 2016, 54, 627-639.	2.3	50
32	Membrane properties required for post-combustion CO2 capture at coal-fired power plants. Journal of Membrane Science, 2016, 511, 250-264.	4.1	93
33	Multi-stage Membrane Processes for CO2 Capture from Cement Industry. Energy Procedia, 2014, 63, 6476-6483.	1.8	28
34	The Economic Value of CO2 for EOR Applications. Energy Procedia, 2014, 63, 7836-7843.	1.8	38
35	A Systematic Method for Membrane CO2 Capture Modeling and Analysis. Energy Procedia, 2014, 63, 217-224.	1.8	18
36	A Tool for Integrated Multi-criteria Assessment of the CCS Value Chain. Energy Procedia, 2014, 63, 7290-7297.	1.8	16

SIMON ROUSSANALY

#	Article	IF	CITATIONS
37	Multi-criteria analyses of two solvent and one low-temperature concepts for acid gas removal from natural gas. Journal of Natural Gas Science and Engineering, 2014, 20, 38-49.	2.1	12
38	Benchmarking of CO 2 transport technologies: Part II – Offshore pipeline and shipping to an offshore site. International Journal of Greenhouse Gas Control, 2014, 28, 283-299.	2.3	80
39	Techno-economic Performance of a Hybrid Membrane – Liquefaction Process for Post-combustion CO2 Capture. Energy Procedia, 2014, 61, 1244-1247.	1.8	32
40	Energy and Cost Evaluation of A Low-temperature CO2 Capture Unit for IGCC plants. Energy Procedia, 2014, 63, 2031-2036.	1.8	10
41	Multi-criteria Analysis of Two CO2 Transport Technologies. Energy Procedia, 2013, 37, 2981-2988.	1.8	11
42	Benchmarking of CO2 transport technologies: Part l—Onshore pipeline and shipping between two onshore areas. International Journal of Greenhouse Gas Control, 2013, 19, 584-594.	2.3	65
43	Carbon chain analysis on a coal IGCC — CCS system with flexible multi-products. Fuel Processing Technology, 2013, 108, 146-153.	3.7	27
44	Economic CO2 network optimization model COCATE European Project (2010-2013). Energy Procedia, 2013, 37, 2923-2931.	1.8	12
45	Costs benchmark of CO2 transport technologies for a group of various size industries. International Journal of Greenhouse Gas Control, 2013, 12, 341-350.	2.3	49
46	A standardized Approach to Multi-criteria Assessment of CCS Chains. Energy Procedia, 2013, 37, 2765-2774.	1.8	18
47	Capital structure in LNG infrastructures and gas pipelines projects: Empirical evidences and methodological issues. Energy Policy, 2013, 61, 285-291.	4.2	12
48	Integrated Techno-economic and Environmental Assessment of an Amine-based Capture. Energy Procedia, 2013, 37, 2453-2461.	1.8	16
49	Selection of Optimal CO2 Capture Plant Capacity for Better Investment Decisions. Energy Procedia, 2013, 37, 7039-7045.	1.8	10
50	Country Risk, Ownership Concentration and Debt Ratio of Gas Transport Projects: A Statistical Analysis. Energy Procedia, 2012, 26, 56-66.	1.8	2
51	Techno Economic Evaluation of Amine based CO2 Capture: Impact of CO2 Concentration and Steam Supply. Energy Procedia, 2012, 23, 381-390.	1.8	74
52	CCS Chain Capacity Selection for Flexible Load Power Plant. Energy Procedia, 2012, 23, 343-353.	1.8	5
53	Towards Improved Cost Evaluation of Carbon Capture, Transport and Storage From Industry. SSRN Electronic Journal, 0, , .	0.4	3
54	Toward Improved Guidelines for Uncertainty Analysis of Carbon Capture and Storage Techno-economic Studies. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
55	Feasibility of Selective Exhaust Gas Recycle Process for Membrane-based CO2 Capture from Natural Gas Combined Cycles – Showstoppers and Alternative Process Configurations. SSRN Electronic Journal, 0, , .	0.4	0
56	Best Practices and Recent Advances in Ccs Cost Engineering. SSRN Electronic Journal, 0, , .	0.4	0
57	CCUS Scenarios for the Cement Industry: Is CO2 Utilization Feasible?. SSRN Electronic Journal, 0, , .	0.4	Ο
58	Understanding the Cost of Retrofitting CO2 Capture to an Integrated Oil Refinery. SSRN Electronic Journal, 0, , .	0.4	1