
Darlene Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4672556/publications.pdf Version: 2024-02-01

DADIENE MILLED

#	Article	IF	CITATIONS
1	The Changing Spectrum of Fungal Keratitis in South Florida. Ophthalmology, 1994, 101, 1005-1013.	5.2	340
2	Diversity of Bacteria at Healthy Human Conjunctiva. , 2011, 52, 5408.		308
3	Endophthalmitis isolates and antibiotic sensitivities: a 6-year review of culture-proven cases. American Journal of Ophthalmology, 2004, 137, 38-42.	3.3	286
4	Acute-onset Endophthalmitis After Cataract Surgery (2000–2004): Incidence, Clinical Settings, and Visual Acuity Outcomes After Treatment. American Journal of Ophthalmology, 2005, 139, 983-987.	3.3	278
5	In Vitro Fluoroquinolone Resistance in Staphylococcal Endophthalmitis Isolates. JAMA Ophthalmology, 2006, 124, 479.	2.4	157
6	Infectious Keratitis Progressing to Endophthalmitis. Ophthalmology, 2012, 119, 2443-2449.	5.2	144
7	Ciprofloxacin and levofloxacin resistance among methicillin-sensitive staphylococcus aureus isolates from keratitis and conjunctivitis. American Journal of Ophthalmology, 2004, 137, 453-458.	3.3	141
8	Insurgence of Fusarium Keratitis Associated With Contact Lens Wear. JAMA Ophthalmology, 2006, 124, 941.	2.4	128
9	Biofilm and Scleral Buckle-associated Infections. Ophthalmology, 1991, 98, 933-938.	5.2	122
10	Endophthalmitis Isolates and Antibiotic Susceptibilities: A 10-Year Review of Culture-Proven Cases. American Journal of Ophthalmology, 2013, 156, 50-52.e1.	3.3	119
11	Staphylococcus aureus Endophthalmitis: Antibiotic Susceptibilities, Methicillin Resistance, and Clinical Outcomes. American Journal of Ophthalmology, 2010, 149, 278-283.e1.	3.3	110
12	Emerging ciprofloxacin-resistant Pseudomonas aeruginosa. American Journal of Ophthalmology, 1999, 128, 509-510.	3.3	109
13	Nontuberculous mycobacterial keratitis in south Florida. Ophthalmology, 1998, 105, 1652-1658.	5.2	104
14	<i>Acanthamoeba</i> keratitis: The Persistence of Cases Following a Multistate Outbreak. Ophthalmic Epidemiology, 2012, 19, 221-225.	1.7	95
15	Delayed- Versus Acute-Onset Endophthalmitis After Cataract Surgery. American Journal of Ophthalmology, 2012, 153, 391-398.e2.	3.3	95
16	The role of microbial flora on the ocular surface. Current Opinion in Allergy and Clinical Immunology, 2009, 9, 466-470.	2.3	91
17	Assessment of Rose Bengal Versus Riboflavin Photodynamic Therapy for Inhibition of Fungal Keratitis Isolates. American Journal of Ophthalmology, 2014, 158, 64-70.e2.	3.3	91
18	Endophthalmitis Caused by Streptococcal Species: Clinical Settings, Microbiology, Management, and Outcomes. American Journal of Ophthalmology, 2014, 157, 774-780.e1.	3.3	80

#	Article	IF	CITATIONS
19	Coagulase-negative Staphylococcal Endophthalmitis. Ophthalmology, 1988, 95, 1404-1410.	5.2	76
20	Endophthalmitis Caused by Bacillus Species. American Journal of Ophthalmology, 2008, 145, 883-888.	3.3	67
21	Ocular infections caused by nonâ€ŧuberculous mycobacteria: update on epidemiology and management. Clinical and Experimental Ophthalmology, 2012, 40, 467-475.	2.6	65
22	Rose Bengal Photodynamic Antimicrobial Therapy: A Novel Treatment for Resistant Fusarium Keratitis. Cornea, 2017, 36, 1141-1144.	1.7	60
23	Rose Bengal– and Riboflavin-Mediated Photodynamic Therapy to Inhibit Methicillin-Resistant Staphylococcus aureus Keratitis Isolates. American Journal of Ophthalmology, 2016, 166, 194-202.	3.3	59
24	Rose Bengal Photodynamic Antimicrobial Therapy for Patients With Progressive Infectious Keratitis: A Pilot Clinical Study. American Journal of Ophthalmology, 2019, 208, 387-396.	3.3	59
25	Fungal Keratitis Associated With Non-therapeutic Soft Contact Lenses. American Journal of Ophthalmology, 2006, 142, 154-155.	3.3	58
26	Review of moxifloxacin hydrochloride ophthalmic solution in the treatment of bacterial eye infections. Clinical Ophthalmology, 2008, 2, 77.	1.8	58
27	Endophthalmitis caused by Gram-positive organisms with reduced vancomycin susceptibility: literature review and options for treatment. British Journal of Ophthalmology, 2016, 100, 446-452.	3.9	58
28	Ocular Flora and Their Antibiotic Resistance Patterns in the Midwest: A Prospective Study of Patients Undergoing Cataract Surgery. American Journal of Ophthalmology, 2013, 155, 36-44.e2.	3.3	57
29	Infectious corneal ulceration: a proposal for neglected tropical disease status. Bulletin of the World Health Organization, 2019, 97, 854-856.	3.3	52
30	Endophthalmitis After Clear Corneal Cataract Surgery: Outcomes Over Two Decades. American Journal of Ophthalmology, 2017, 174, 155-159.	3.3	51
31	In Vitro Efficacy and Pharmacodynamic Indices for Antibiotics against Coagulase-Negative Staphylococcus Endophthalmitis Isolates. Ophthalmology, 2007, 114, 871-875.	5.2	50
32	SCLERAL BUCKLE INFECTIONS DUE TO ATYPICAL MYCOBACTERIA. Retina, 1991, 11, 394-398.	1.7	48
33	Microbiologic Trends and Biofilm Growth on Explanted Periorbital Biomaterials. Ophthalmic Plastic and Reconstructive Surgery, 2013, 29, 376-381.	0.8	43
34	Composition and Comparison of the Ocular Surface Microbiome in Infants and Older Children. Translational Vision Science and Technology, 2018, 7, 16.	2.2	43
35	Exogenous Fungal Endophthalmitis: An Analysis of Isolates and Susceptibilities to Antifungal Agents Over a 20-Year Period (1990–2010). American Journal of Ophthalmology, 2015, 159, 257-264.e1.	3.3	42
36	Effects of Methylprednisolone and Cyclosporine A on Fungal Growth In Vitro. Cornea, 1999, 18, 306.	1.7	39

#	Article	IF	CITATIONS
37	Comparative <i>In Vitro</i> Susceptibility of Besifloxacin and Seven Comparators Against Ciprofloxacin- and Methicillin-Susceptible/Nonsusceptible Staphylococci. Journal of Ocular Pharmacology and Therapeutics, 2013, 29, 339-344.	1.4	38
38	Endophthalmitis Caused by Enterococcus faecalis: Clinical Features, Antibiotic Sensitivities, and Outcomes. American Journal of Ophthalmology, 2014, 158, 1018-1023.e1.	3.3	37
39	In Vitro Antifungal Activity of the Fourth Generation Fluoroquinolones Against Candida Isolates from Human Ocular Infections. Ocular Immunology and Inflammation, 2006, 14, 347-351.	1.8	35
40	Effect of clinical parameters on the ocular surface microbiome in children and adults. Clinical Ophthalmology, 2018, Volume 12, 1189-1197.	1.8	35
41	Update on the Epidemiology and Antibiotic Resistance of Ocular Infections. Middle East African Journal of Ophthalmology, 2017, 24, 30-42.	0.3	33
42	Endophthalmitis Caused by Nontuberculous Mycobacterium: Clinical Features, Antimicrobial Susceptibilities, and Treatment Outcomes. American Journal of Ophthalmology, 2016, 168, 150-156.	3.3	32
43	Antimicrobial Resistance Profiles of Ocular and Nasal Flora in Patients Undergoing Intravitreal Injections. American Journal of Ophthalmology, 2011, 152, 999-1004.e2.	3.3	30
44	Cysticidal Activity of Antifungals against Different Genotypes of Acanthamoeba. Antimicrobial Agents and Chemotherapy, 2014, 58, 5626-5628.	3.2	28
45	Trends in Fluoroquinolone Nonsusceptibility Among Coagulase-Negative Staphylococcus Isolates Causing Endophthalmitis, 1995-2016. JAMA Ophthalmology, 2017, 135, 814.	2.5	28
46	Clinical Response of Contact Lens-Associated Fungal Keratitis to Topical Fluoroquinolone Therapy. Cornea, 2007, 26, 621-624.	1.7	27
47	Delayed-onset endophthalmitis associated with corneal suture infections. Journal of Ophthalmic Inflammation and Infection, 2013, 3, 51.	2.2	25
48	Paediatric infectious keratitis: a case series of 107 children presenting to a tertiary referral centre. British Journal of Ophthalmology, 2017, 101, 1488-1492.	3.9	25
49	Presence of SARS-CoV-2 Viral RNA in Aqueous Humor of Asymptomatic Individuals. American Journal of Ophthalmology, 2021, 230, 151-155.	3.3	25
50	Intravitreal moxifloxacin in the management of Ochrobactrum intermedium endophthalmitis due to metallic intraocular foreign body. Clinical Ophthalmology, 2013, 7, 1727.	1.8	24
51	<p>Molecular epidemiology and resistance profiles among healthcare- and community-associated Staphylococcus aureus keratitis isolates</p> . Infection and Drug Resistance, 2019, Volume 12, 831-843.	2.7	24
52	Pharmacological treatment for infectious corneal ulcers. Expert Opinion on Pharmacotherapy, 2013, 14, 543-560.	1.8	23
53	Emerging 8-Methoxyfluoroquinolone Resistance among Methicillin-Susceptible Staphylococcus epidermidis Isolates Recovered from Patients with Endophthalmitis. Journal of Clinical Microbiology, 2013, 51, 2959-2963.	3.9	23
54	Endophthalmitis Associated With Intravitreal Injections of Anti-VEGF Agents at a Tertiary Referral Center: In-House and Referred Cases. Ophthalmic Surgery Lasers and Imaging Retina, 2018, 49, 313-319.	0.7	23

#	Article	IF	CITATIONS
55	Anterior Chamber and Vitreous Concordance in Endophthalmitis. JAMA Ophthalmology, 2010, 128, 1136.	2.4	22
56	Candida Endophthalmitis After Descemet Stripping Automated Endothelial Keratoplasty With Grafts From Both Eyes of a Donor With Possible Systemic Candidiasis. Cornea, 2018, 37, 515-518.	1.7	22
57	0.01% Hypochlorous Acid as an Alternative Skin Antiseptic: An In Vitro Comparison. Dermatologic Surgery, 2018, 44, 1489-1493.	0.8	22
58	Comparative In Vitro Activity of Levofloxacin, Ofloxacin, and Ciprofloxacin Against Ocular Streptococcal Isolates. Cornea, 2004, 23, 289-293.	1.7	21
59	Human Corneal Changes After Rose Bengal Photodynamic Antimicrobial Therapy for Treatment of Fungal Keratitis. Cornea, 2018, 37, e46-e48.	1.7	20
60	Clinical Features, Antibiotic Susceptibility Profiles, and Outcomes of Infectious Keratitis Caused by Achromobacter xylosoxidans. Cornea, 2016, 35, 626-630.	1.7	19
61	Microbiology and Biofilm Trends of Silicone Lacrimal Implants: Comparing Infected Versus Routinely Removed Stents. Ophthalmic Plastic and Reconstructive Surgery, 2016, 32, 452-457.	0.8	19
62	Rose bengal photodynamic antimicrobial therapy to inhibit Pseudomonas aeruginosa keratitis isolates. Lasers in Medical Science, 2020, 35, 861-866.	2.1	19
63	UV-Photokeratitis Associated with Germicidal Lamps Purchased during the COVID-19 Pandemic. Ocular Immunology and Inflammation, 2021, 29, 76-80.	1.8	19
64	Comparative activity of antimicrobials against <i>Pseudomonas aeruginosa</i> , <i>Achromobacter xylosoxidans</i> and <i>Stenotrophomonas maltophilia</i> keratitis isolates. British Journal of Ophthalmology, 2018, 102, 708-712.	3.9	18
65	Clinical Features, Antibiotic Susceptibility Profile, and Outcomes of Infectious Keratitis Caused by Stenotrophomonas maltophilia. Cornea, 2018, 37, 326-330.	1.7	16
66	Clinical Features, Antibiotic Susceptibilities, and Treatment Outcomes of Endophthalmitis Caused by Staphylococcus epidermidis. Ophthalmology Retina, 2018, 2, 396-400.	2.4	14
67	ENDOPHTHALMITIS CAUSED BY ACHROMOBACTER XYLOSOXIDANS AFTER CATARACT SURGERY. Retina, 2014, 34, 583-586.	1.7	13
68	In vitro Susceptibilities of Methicillin-Susceptible and Resistant Staphylococci to Traditional Antibiotics Compared to a Novel Fluoroquinolone. Journal of Ophthalmic Inflammation and Infection, 2020, 10, 9.	2.2	13
69	Rose Bengal Photodynamic Antimicrobial Therapy: A Pilot Safety Study. Cornea, 2021, 40, 1036-1043.	1.7	12
70	Assessment of risk factors for oxacillin-resistant ocular flora in eyes having cataract surgery. Journal of Cataract and Refractive Surgery, 2015, 41, 387-392.	1.5	11
71	Contact-Lens-Associated Purpureocillium Keratitis: Risk Factors, Microbiologic Characteristics, Clinical Course, and Outcomes. Seminars in Ophthalmology, 2017, 32, 157-162.	1.6	11
72	Clinical features, antimicrobial susceptibilities, and treatment outcomes of patients with culture positive endophthalmitis after penetrating keratoplasty. American Journal of Ophthalmology Case Reports, 2018, 9, 62-67.	0.7	11

#	Article	IF	CITATIONS
73	Antimycotic Efficacy and Safety of a New Cold Corneal Storage Medium by Time–Kill and Toxicity Studies. Cornea, 2019, 38, 1314-1321.	1.7	11
74	Systemic Miltefosine as an Adjunct Treatment of Progressive <i>Acanthamoeba</i> Keratitis. Ocular Immunology and Inflammation, 2021, 29, 1576-1584.	1.8	11
75	Prolonged <i>Curvularia Endophthalmitis</i> Due to Organism Sequestration. JAMA Ophthalmology, 2014, 132, 1123.	2.5	10
76	Modeling the seasonality of Methicillin-resistant Staphylococcus aureus infections in hospitals with environmental contamination. Journal of Biological Dynamics, 2019, 13, 99-122.	1.7	9
77	A novel rat contact lens model for Fusarium keratitis. Molecular Vision, 2013, 19, 2596-605.	1.1	9
78	Acute-onset endophthalmitis caused by Staphylococcus lugdunensis. American Journal of Ophthalmology Case Reports, 2018, 9, 28-30.	0.7	8
79	Endophthalmitis caused by Pantoea agglomerans: clinical features, antibiotic sensitivities, and outcomes. Clinical Ophthalmology, 2015, 9, 1203.	1.8	7
80	Endophthalmitis Caused by Corynebacterium Species: Clinical Features, Antibiotic Susceptibility, and Treatment Outcomes. Ophthalmology Retina, 2017, 1, 200-205.	2.4	7
81	Peptide Nucleic Acid–Fluorescence In Situ Hybridization for Detection of Staphylococci From Endophthalmitis Isolates: A Proof-of-Concept Study. , 2017, 58, 4307.		6
82	Interfacial Behavior of Fumonisin B1 Toxin and Its Degradation on the Membrane. Langmuir, 2019, 35, 2814-2820.	3.5	6
83	Long-term outcomes of riboflavin photodynamic antimicrobial therapy as a treatment for infectious keratitis. American Journal of Ophthalmology Case Reports, 2019, 15, 100481.	0.7	6
84	Postoperative Endophthalmitis Caused by <i>Cutibacterium</i> (Formerly) Tj ETQq Ophthalmology, 2021, 12, 1-10.	0 0 0 rgBT 0.7	/Overlock 10 6
85	Interactions between staphylococcal enterotoxins A and D and superantigen-like proteins 1 and 5 for predicting methicillin and multidrug resistance profiles among Staphylococcus aureus ocular isolates. PLoS ONE, 2021, 16, e0254519.	2.5	6
86	Characterization of Pseudomonas aeruginosa isolates from patients with endophthalmitis using conventional microbiologic techniques and whole genome sequencing. Journal of Ophthalmic Inflammation and Infection, 2020, 10, 25.	2.2	6
87	Rose Bengal and Riboflavin Mediated Photodynamic Antimicrobial Therapy Against Selected South Florida <i>Nocardia</i> Keratitis Isolates. Translational Vision Science and Technology, 2022, 11, 29.	2.2	6
88	Genotypic and Phenotypic Antibiotic Resistance in <i>Staphylococcus Epidermidis</i> Endophthalmitis. Ophthalmic Surgery Lasers and Imaging Retina, 2020, 51, S13-S16.	0.7	5
89	Evaluation of Postoperative Povidone-Iodine in Adjustable Suture Strabismus Surgery to Reduce Suture Colonization. JAMA Ophthalmology, 2016, 134, 1151.	2.5	4
90	Multiplex Polymerase Chain Reaction Assay for Screening of Mycotoxin Genes From Ocular Isolates of Fusarium species. Cornea, 2018, 37, 1042-1046.	1.7	4

#	Article	IF	CITATIONS
91	Microbiology and biofilm of corneal sutures. British Journal of Ophthalmology, 2018, 102, 1602-1606.	3.9	4
92	Endophthalmitis Caused by <i>Agrobacterium radiobacter</i> following Intravitreal Aflibercept for Diabetic Retinopathy. Case Reports in Ophthalmology, 2020, 11, 22-27.	0.7	4
93	Endogenous Endophthalmitis: Has the Opioid Crisis Impacted the Rates and Severity of Intravenous Drug-Related Cases?. Journal of Vitreoretinal Diseases, 2018, 2, 262-271.	0.7	3
94	<chronic, <em="" bacterial="" by="" caused="" endophthalmitis="" recurrent="">Achromobacter xylosoxidans: Clinical Features and Management. International Medical Case Reports Journal, 2020, Volume 13, 265-269.</chronic,>	0.8	3
95	Bacterial Keratitis. , 2021, , 85-104.		3
96	Nocardia keratitis: amikacin nonsusceptibility, risk factors, and treatment outcomes. Journal of Ophthalmic Inflammation and Infection, 2022, 12, 11.	2.2	3
97	Brief incubation of corneal grafts in activated platelet rich plasma enhances corneal endothelial cell survival and regeneration. Experimental Eye Research, 2022, 220, 109100.	2.6	3
98	Nutritionally variant streptococci causing endophthalmitis associated with intravitreal anti-vascular endothelial growth factor injection. American Journal of Ophthalmology Case Reports, 2021, 21, 101019.	0.7	2
99	Coagulase-negative Staphylococcus isolates causing endophthalmitis: Changing patterns of vancomycin susceptibilities. Journal of Cataract and Refractive Surgery, 2019, 45, 380-381.	1.5	1
100	Reply to Comment on: Rose Bengal Photodynamic Antimicrobial Therapy for Patients With ProgressiveÂInfectious Keratitis: A Pilot Clinical Study. American Journal of Ophthalmology, 2020, 214, 198-200.	3.3	1
101	Endophthalmitis. , 2012, , 550-560.		1
102	Infections in Ocular Prosthesis. Current Ophthalmology Reports, 2016, 4, 159-171.	1.2	0
103	Retinal Detachment Repair in a Patient With Active Zika Virus Infection. Journal of Vitreoretinal Diseases, 2017, 1, 81-83.	0.7	0
104	Endophthalmitis Caused by Methicillin-Resistant Staphylococcus aureus (MRSA). , 2018, , 199-219.		0
105	Post-Traumatic Endophthalmitis Caused by Oerskovia turbata. Case Reports in Ophthalmology, 2019, 10, 312-318.	0.7	0
106	Microbiologic Diagnosis in Endophthalmitis. , 2016, , 49-75.		0