
Ruixia Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/467228/publications.pdf Version: 2024-02-01

RUIVIA HOU

#	Article	IF	CITATIONS
1	Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 650598.	4.1	208
2	Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter, 2012, 8, 6048.	2.7	197
3	Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids and Surfaces B: Biointerfaces, 2013, 103, 318-325.	5.0	93
4	Stiff micelle-crosslinked hyaluronate hydrogels with low swelling for potential cartilage repair. Journal of Materials Chemistry B, 2019, 7, 5490-5501.	5.8	69
5	Tough and Fatigue Resistant Biomimetic Hydrogels of Interlaced Self-Assembled Conjugated Polymer Belts with a Polyelectrolyte Network. Chemistry of Materials, 2014, 26, 3522-3529.	6.7	68
6	Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels. Colloids and Surfaces B: Biointerfaces, 2015, 132, 146-154.	5.0	49
7	Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres. Colloids and Surfaces B: Biointerfaces, 2015, 125, 51-57.	5.0	29
8	A Polyaniline Nanoparticles Crosslinked Hydrogel with Excellent Photothermal Antibacterial and Mechanical Properties for Wound Dressing. Macromolecular Bioscience, 2022, 22, e2100386.	4.1	24
9	Differentiation of bMSCs on Biocompatible, Biodegradable, and Biomimetic Scaffolds for Largely Defected Tissue Repair. ACS Applied Bio Materials, 2020, 3, 735-746.	4.6	23
10	Single cell migration dynamics mediated by geometric confinement. Colloids and Surfaces B: Biointerfaces, 2016, 145, 72-78.	5.0	18
11	Development of Poloxamer Hydrogels Containing Antibacterial Guanidine-Based Polymers for Healing of Full-Thickness Skin Wound. ACS Biomaterials Science and Engineering, 2021, 7, 4557-4568.	5.2	17
12	User-friendly microfluidic manufacturing of hydrogel microspheres with sharp needle. Biofabrication, 2022, 14, 025017.	7.1	16
13	Investigation on biological properties of tacrolimus-loaded poly(1,3-trimethylene carbonate) in vitro. Applied Surface Science, 2010, 256, 5000-5005.	6.1	13
14	Pre-shear bioprinting of highly oriented porous hydrogel microfibers to construct anisotropic tissues. Biomaterials Science, 2021, 9, 6763-6771.	5.4	13
15	Biological properties of a bionic scaffold for esophageal tissue engineering research. Colloids and Surfaces B: Biointerfaces, 2019, 179, 208-217.	5.0	12
16	Structure and properties of PVA/silk fibroin hydrogels and their effects on growth behavior of various cell types. Materials Research Express, 2020, 7, 015413.	1.6	7
17	Study of functional drug-eluting stent in promoting endothelialization and antiproliferation. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 244-260.	3.5	2
18	Development and Prospect of Esophageal Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2022, 10, 853193.	4.1	2