Thomas Vetter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4672116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel image analysis technique for 2D characterization of overlapping needle-like crystals. Powder Technology, 2022, 399, 116827.	4.2	9
2	Design, Development, and Analysis of an Automated Sampling Loop for Online Monitoring of Chiral Crystallization. Organic Process Research and Development, 2022, 26, 1063-1077.	2.7	2
3	Crystal Growth Cell Incorporating Automated Image Analysis Enabling Measurement of Facet Specific Crystal Growth Rates. Crystal Growth and Design, 2022, 22, 2837-2848.	3.0	6
4	Predicting filtration of needle-like crystals: A Monte Carlo simulation study of polydisperse packings of spherocylinders. Chemical Engineering Science, 2021, 230, 116151.	3.8	3
5	Single droplets to particles - size, shape, shell thickness and porosity analyses using X-ray computed tomography. Chemical Engineering Science, 2021, 245, 116879.	3.8	4
6	Selective polymorphism of α-glycine by acoustic levitation. CrystEngComm, 2020, 22, 7075-7081.	2.6	5
7	Exploiting the Surface Properties of Graphene for Polymorph Selectivity. ACS Nano, 2020, 14, 10394-10401.	14.6	18
8	Designing Isothermal Batch Deracemization Processes with Optimal Productivity: 1. Parametric Analysis Using a Population Balance Equation Model. Crystal Growth and Design, 2020, 20, 4293-4306.	3.0	2
9	A mechanistic model to predict droplet drying history and particle shell formation in multicomponent systems. Chemical Engineering Science, 2020, 224, 115713.	3.8	19
10	Polymorph Selection and Process Intensification in a Continuous Crystallization–Milling Process: A Case Study on <scp>l</scp> -Glutamic Acid Crystallized from Water. Organic Process Research and Development, 2019, 23, 361-374.	2.7	21
11	Polymorph Selection by Continuous Crystallization in the Presence of Wet Milling. Crystal Growth and Design, 2019, 19, 2259-2271.	3.0	13
12	Filterability prediction of needle-like crystals based on particle size and shape distribution data. Separation and Purification Technology, 2019, 211, 768-781.	7.9	30
13	Design and Performance Assessment of Continuous Crystallization Processes Resolving Racemic Conglomerates. Crystal Growth and Design, 2018, 18, 1686-1696.	3.0	20
14	Salts, Cocrystals, and Ionic Cocrystals of a "Simple―Tautomeric Compound. Crystal Growth and Design, 2018, 18, 6973-6983.	3.0	32
15	Quantifying the Inherent Uncertainty Associated with Nucleation Rates Estimated from Induction Time Data Measured in Small Volumes. Crystal Growth and Design, 2017, 17, 2852-2863.	3.0	53
16	Model-Based Analysis of Continuous Crystallization/Reaction Processes Separating Conglomerate Forming Enantiomers. Crystal Growth and Design, 2017, 17, 233-247.	3.0	37
17	New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature. Geophysical Research Letters, 2017, 44, 5504-5510.	4.0	63
18	Aromatic stacking $\hat{a} \in \hat{a}$ key step in nucleation. Chemical Communications, 2017, 53, 7905-7908.	4.1	70

THOMAS VETTER

#	Article	IF	CITATIONS
19	Separation of conglomerate forming enantiomers using a novel continuous preferential crystallization process. AICHE Journal, 2015, 61, 2810-2823.	3.6	39
20	Agglomeration of Needle-like Crystals in Suspension: I. Measurements. Crystal Growth and Design, 2015, 15, 1923-1933.	3.0	30
21	An optimization-based approach to extract faceted crystal shapes from stereoscopic images. Computers and Chemical Engineering, 2015, 75, 171-183.	3.8	17
22	Designing Robust Crystallization Processes in the Presence of Parameter Uncertainty Using Attainable Regions. Industrial & Engineering Chemistry Research, 2015, 54, 10350-10363.	3.7	28
23	Solvent and additive interactions as determinants in the nucleation pathway: general discussion. Faraday Discussions, 2015, 179, 383-420.	3.2	18
24	Modeling the facet growth rate dispersion of β l-glutamic acid—Combining single crystal experiments with nD particle size distribution data. Chemical Engineering Science, 2015, 133, 30-43.	3.8	22
25	Agglomeration of Needle-like Crystals in Suspension. II. Modeling. Crystal Growth and Design, 2015, 15, 4296-4310.	3.0	27
26	Evaluation of Parameter Estimation Methods for Crystallization Processes Modeled via Population Balance Equations. Chemical Engineering Research and Design, 2015, 94, 275-289.	5.6	21
27	Modeling the facet growth rate dispersion of β l-glutamic acid—Combining single crystal experiments with nD particle size distribution data. , 2015, 133, 30-30.		1
28	Attainable Regions in Crystallization Processes. Computer Aided Chemical Engineering, 2014, 34, 465-470.	0.5	7
29	Regions of attainable particle sizes in continuous and batch crystallization processes. Chemical Engineering Science, 2014, 106, 167-180.	3.8	107
30	Growth Rate Estimation of β <scp> </scp> -Glutamic Acid from Online Measurements of Multidimensional Particle Size Distributions and Concentration. Industrial & Engineering Chemistry Research, 2014, 53, 9136-9148.	3.7	52
31	High accuracy online measurement of multidimensional particle size distributions during crystallization. Chemical Engineering Science, 2014, 105, 155-168.	3.8	80
32	Modeling Nucleation, Growth, and Ostwald Ripening in Crystallization Processes: A Comparison between Population Balance and Kinetic Rate Equation. Crystal Growth and Design, 2013, 13, 4890-4905.	3.0	117
33	Controlling and Predicting Crystal Shapes: The Case of Urea. Angewandte Chemie - International Edition, 2013, 52, 13369-13372.	13.8	89
34	Uncovering Molecular Details of Urea Crystal Growth in the Presence of Additives. Journal of the American Chemical Society, 2012, 134, 17221-17233.	13.7	182
35	Measuring multidimensional particle size distributions during crystallization. Chemical Engineering Science, 2012, 77, 130-142.	3.8	68
36	Slowing the Growth Rate of Ibuprofen Crystals Using the Polymeric Additive Pluronic F127. Crystal Growth and Design, 2011, 11, 3813-3821.	3.0	52

#	Article	IF	CITATIONS
37	Measurement of 3D particle size distributions by stereoscopic imaging. Chemical Engineering Science, 2010, 65, 1362-1373.	3.8	60
38	Monitoring the particle size and shape in the crystallization of paracetamol from water. Chemical Engineering Research and Design, 2010, 88, 447-454.	5.6	36
39	Professor Roger Davey: Master of <i>All</i> Crystal Trades. Crystal Growth and Design, 0, , .	3.0	0