Janet E Mertz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4671859/publications.pdf Version: 2024-02-01

IANET F MEDTZ

#	Article	IF	CITATIONS
1	Regulation of the latent-lytic switch in Epstein–Barr virus. Seminars in Cancer Biology, 2014, 26, 60-68.	4.3	219
2	Estrogen-Related Receptor α1 Transcriptional Activities Are Regulated in Part via the ErbB2/HER2 Signaling Pathway. Molecular Cancer Research, 2007, 5, 71-85.	1.5	103
3	An Epstein-Barr Virus (EBV) Mutant with Enhanced BZLF1 Expression Causes Lymphomas with Abortive Lytic EBV Infection in a Humanized Mouse Model. Journal of Virology, 2012, 86, 7976-7987.	1.5	102
4	Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells. PLoS Pathogens, 2015, 11, e1005195.	2.1	79
5	Cellular Differentiation Regulator BLIMP1 Induces Epstein-Barr Virus Lytic Reactivation in Epithelial and B Cells by Activating Transcription from both the R and Z Promoters. Journal of Virology, 2015, 89, 1731-1743.	1.5	75
6	ZEB1 Regulates the Latent-Lytic Switch in Infection by Epstein-Barr Virus. PLoS Pathogens, 2007, 3, e194.	2.1	73
7	Cellular MicroRNAs 200b and 429 Regulate the Epstein-Barr Virus Switch between Latency and Lytic Replication. Journal of Virology, 2010, 84, 10329-10343.	1.5	73
8	ZEB Negatively Regulates the Lytic-Switch BZLF1 Gene Promoter of Epstein-Barr Virus. Journal of Virology, 2003, 77, 199-207.	1.5	67
9	Binding of hnRNP L to the Pre-mRNA Processing Enhancer of the Herpes Simplex Virus Thymidine Kinase Gene Enhances both Polyadenylation and Nucleocytoplasmic Export of Intronless mRNAs. Molecular and Cellular Biology, 2005, 25, 6303-6313.	1.1	59
10	Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathogens, 2017, 13, e1006404.	2.1	55
11	Either ZEB1 or ZEB2/SIP1 Can Play a Central Role in Regulating the Epstein-Barr Virus Latent-Lytic Switch in a Cell-Type-Specific Manner. Journal of Virology, 2010, 84, 6139-6152.	1.5	53
12	ZEB1 and c-Jun Levels Contribute to the Establishment of Highly Lytic Epstein-Barr Virus Infection in Gastric AGS Cells. Journal of Virology, 2007, 81, 10113-10122.	1.5	49
13	Identification of a Novel Element Involved in Regulation of the Lytic Switch BZLF1 Gene Promoter of Epstein-Barr Virus. Journal of Virology, 2001, 75, 867-877.	1.5	44
14	Lenalidomide, Thalidomide, and Pomalidomide Reactivate the Epstein–Barr Virus Lytic Cycle through Phosphoinositide 3-Kinase Signaling and Ikaros Expression. Clinical Cancer Research, 2016, 22, 4901-4912.	3.2	41
15	Transforming Growth Factor Î ² -Induced Reactivation of Epstein-Barr Virus Involves Multiple Smad-Binding Elements Cooperatively Activating Expression of the Latent-Lytic Switch <i>BZLF1</i> Gene. Journal of Virology, 2011, 85, 7836-7848.	1.5	36
16	Pre-mRNA processing enhancer (PPE) elements from intronless genes play additional roles in mRNA biogenesis than do ones from intron-containing genes. Nucleic Acids Research, 2005, 33, 2215-2226.	6.5	22
17	Expression from herpesvirus promoters does not relieve the intron requirement for cytoplasmic accumulation of human β-globin mRNA. Nucleic Acids Research, 1991, 19, 7231-7234.	6.5	15
18	The ZIIR Element of the Epstein-Barr Virus BZLF1 Promoter Plays a Central Role in Establishment and Maintenance of Viral Latency. Journal of Virology, 2011, 85, 5081-5090.	1.5	15

#	Article	IF	CITATIONS
19	Reactivation of Epstein-Barr Virus by HIF-1Î \pm Requires p53. Journal of Virology, 2020, 94, .	1.5	12
20	Reversal of transforming growth factor-β induced epithelial-to-mesenchymal transition and the ZEB proteins. Fibrogenesis and Tissue Repair, 2012, 5, S28.	3.4	6